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Preface

Random matrix theory was introduced into physics by E.P. Wigner in 1955, and
consolidated with deeper and wider ranging investigations in the last three decades,
it has become an integral part of quantum physics. As aptly stated by H.A. Weiden-
miiller in a recent commentary: “although used with increasing frequency in many
branches of physics, random matrix ensembles sometimes are too unspecific to ac-
count for important features of the physical system at hand. One refinement which
retains the basic stochastic approach but allows for such features consists in the use
of embedded ensembles.” This new class of random matrix ensembles, the embed-
ded random matrix ensembles, were introduced in the context of the nuclear shell
model in early 1970. As stated by J.B. French: “the GOE, now almost universally
regarded as a model for a corresponding chaotic system, is an ensemble of multi-
body, not two-body interactions. This difference shows up both in one-point (density
of states) and two-point (fluctuations and smoothed transition strengths) functions
generated by the nuclear shell model. For a better a priori model we can choose an
ensemble of k-body interactions (k = 2 is an interesting case) by generating a GOE
in k-particle space and using it in the space of m-particles. For most purposes the
resulting embedded GOE (or EGOE) is very difficult to deal with, but by good luck,
we can use it to study the questions we have posed and the answers are different
from, and much more enlightening than, those which would come from GOE.”
Research over the last two decades in particular has produced a large body of
new results for embedded ensembles and it is clear that these random matrix ensem-
bles are indispensable in the study of finite many-particle quantum systems such
as atoms, nuclei, quantum dots, small metallic grains, lattice spin models for quan-
tum computers, and so on. In this book, starting with an easy-to-read introduction
to general random matrix theory, all the necessary concepts for embedded random
matrix ensembles are developed from scratch and the reader is then carried to the
frontiers of present-day research. The first chapter gives a general introduction and
the next two chapters deal with some general aspects of classical random matrix en-
sembles. Eight chapters in the remaining part of the book give results for a variety
of embedded ensembles, mainly classified according to the Lie symmetries of the
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Hamiltonian of a finite many-body quantum system, while four chapters are devoted
to applications. The last chapter provides a summary and future prospects.

The starting point for this book was a series of lectures given by the author at
Andhra University, Visakhapatnam (India) in 2002. Efforts have been made to give
enough detail in every chapter to ensure that an advanced graduate student can fol-
low the mathematics and understand the results of ‘computer experiments’ for em-
bedded ensembles. On the other hand, the book gives an exhaustive review of the
field so that a research student can use the material to start working on new questions
in the subject of embedded ensembles itself and in their application to many-body
quantum physics.

Over the last three decades I have had the pleasure of collaborating with many
people, and discussed the topics of this book with many others. First of all, I would
like to specially thank the late J.B. French for a long and profitable collaboration on
statistical nuclear spectroscopy. Embedded random matrix ensembles have grown
out of this subject and the present work is complementary to the book Statistical
Spectroscopy and Spectral Distributions in Nuclei by R.U. Haq and myself, pub-
lished in 2010 by World Scientific. The influence of J.B. French on my way of
thinking about random matrix theory in physics is surely visible in several parts of
the present book.

I was fortunate in having A. Pandey, J.C. Parikh, V. Potbhare, and S. Tomsovic
as collaborators in my early years of research on random matrix theory. Regarding
the topics discussed in several chapters of this book, I have collaborated intensively
with R. Sahu, N.D. Chavda, and my former Ph.D. student Manan Vyas. Without that
collaboration, this book would not have been possible. I have also benefited from
collaboration and discussions with many colleagues, friends, and students, and in
particular with Dilip Angom, B. Chakrabarti, J.M.G. Gomez, R.U. Haq, K. Kar,
D. Majumdar, the late J. Retamosa, S. Sumedha, and Y.M. Zhao. I am especially
indebted to H.A. Weidenmiiller and the late O. Bohigas for discussions and encour-
agement. I am thankful to N.D. Chavda and Manan Vyas for preparing some of
the figures and thank Manan Vyas once again for typing some parts of the book.
Thanks are also due to the directors of the Physical Research Laboratory (Ahmed-
abad, India) for facilities and support. There are many others who have directly or
indirectly contributed to my work on embedded ensembles and I sincerely thank
them. Copyright permission for using some of the figures, from the American Phys-
ical Society, the American Institute of Physics, Elsevier Science, the Institute of
Physics, Springer-Verlag, and World Scientific is gratefully acknowledged. I am
also thankful to all the authors who have given permission to use figures from their
publications. Special thanks are due to the editors at Springer-Verlag for their efforts
in bringing out this book. And lastly and most importantly, I am indebted to my wife
Vijaya for her unfailing support since 1980.

Physical Research Laboratory, V.K.B. Kota
Ahmedabad, India
November 2013
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Chapter 1
Introduction

Wishart [1] introduced random matrices in 1928 in the context of multi-variate
statistics. However, it was Wigner [2—4] who introduced random matrix ensembles
into physics in 1955, in his quest to derive information about the level and strength
of fluctuations in compound nucleus resonances. As stated by Wigner [5, p. 203]:

The assumption is that the Hamiltonian which governs the behavior of a complicated system
is a random symmetric matrix with no particular properties except for its symmetric nature.

And French adds [6]:

With one short step beyond this, specifically replacing ‘complicated’ by ‘non-integrable’,
this paper would have led to the foundations of quantum chaos. Perhaps it should be so
regarded even as it stands.

Dyson [7-10] provided the tripartite classification of random matrix ensembles giv-
ing the classical random matrix ensembles, i.e., the Gaussian orthogonal (GOE),
unitary (GUE) and symplectic (GSE) ensembles. The classical random matrix en-
sembles were developed and applied in nuclear (and to a lesser extent atomic)
physics over the period 1955-1972 by Dyson, Mehta, Porter, and others. Porter’s
book [11] gives an excellent introduction to random matrix theory and also contains
a collection of papers on this subject, published up until 1965, including all the orig-
inal papers of Wigner and Dyson. Later, Mehta in his book [12], first published in
1967 and with a third edition in 2004, described the mathematical foundations of
the classical ensembles, and this has since become a standard reference in work re-
lating to random matrices. The Albany conference in 1972 [13] changed the course
of research activity in applications of this field to quantum physics. From 1972
to 1983, developments in the subject were due in particular to French, Bohigas,
Pandey, Wong, and others [14].

Random matrix theory (RMT) has become a common theme in quantum physics,
with the recognition that it is relevant to quantum systems whose classical analogues
are chaotic. The Bohigas—Giannoni—Schmit (BGS) conjecture [15, 16] put forward
in 1984 is the cornerstone for this. This asserts that the spectra of time-reversal-
invariant systems whose classical analogs are K systems show the same fluctuation
properties as predicted by GOE. Furthermore, as stated by BGS, if this conjecture

V.K.B. Kota, Embedded Random Matrix Ensembles in Quantum Physics, 1
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happens to be true, the ‘universality of the laws of level fluctuations’ in quantal
spectra, already found in nuclei and to a lesser extent in atoms, will then have been
established. As a consequence, they should also be found in other quantal systems,
such as molecules, hadrons, etc. Recently, Heusler et al. [17-19] gave a proof of
the BGS conjecture using semi-classical methods. On the other hand, Berry [20, 21]
showed that integrable (or regular) systems follow Poisson. Combining BGS with
the work of Berry one can conclude as summarized by Altshuler in the abstract of
the colloquium he gave in memory of J.B. French at the university of Rochester in
2004:

Classical dynamical systems can be separated into two classes—integrable and chaotic.
For quantum systems this distinction manifests itself, e.g., in spectral statistics. Roughly
speaking, integrability leads to a Poisson distribution for the energies, while chaos implies
Wigner—Dyson statistics of levels, which are characteristic for the ensemble of random ma-
trices. The onset of chaotic behavior for a rather broad class of systems can be understood
as a delocalization in the space of quantum numbers that characterize the original integrable
system.

Haake’s book [22] is the best available reference for quantum chaos and its relation
to RMT. Similarly, laboratory tests of RMT for wave chaos using microwave bil-
liards are discussed in [23], while Efetov [24] introduced a supersymmetry approach
for RMT. Besides books, there are some good review articles on RMT in physics
by Brody et al. [14], Guhr et al. [25], Mirlin [26], and Weidenmiiller et al. [27, 28],
but see also the articles in a special issue of the Journal of Physics A [29]. In order
to study symmetry-breaking effects on level and strength fluctuations, order—chaos
transitions, etc., one must consider interpolating/deformed random matrix ensem-
bles, i.e., ensembles with more information. The earliest examples are banded ran-
dom matrix ensembles, the Rosenzweig—Porter model, 2 x 2 GOE due to Dyson,
and so on; see [11]. A large class of random matrix ensembles is now being studied
and applied to all branches of physics.

With the revival of RMT research in physics from 1984, large scale research
on random matrices also began in probability theory. Developments on the mathe-
matical and statistics side are due not only to the Wigner—Dyson classical random
matrix ensembles, but more importantly to Wishart’s original paper [1] and the work
by Pastur on covariance matrices [30, 31]. The result of all this research led to ap-
plications of RMT to many diverse fields such as quantum information science,
econophysics, multivariate statistics, information theory, wireless communication,
neural networks, biological networks, number theory, and so on. This has also led to
many mathematical books on the subject over the last 5 years. These are due to An-
derson, Bai, Dieft, Pastur, Sarnak, and others [32—41]. In addition, there are books
giving details of RMT applications to physics in particular and to science in general.
See, for example, [42—44].

While the above developments were under way, a new class of random matrix
ensembles, called embedded random matrix ensembles, began to receive special at-
tention in quantum physics [45—48]. Isolated finite many-particle quantum systems
such as nuclei, atoms, quantum dots, small metallic grains, spin models for quantum
computer cores, BEC, etc., share one common property—their constituents interact
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via interactions of low body rank (see Chap. 4 for definitions) and they are mostly
two-body in nature. Besides this, the particles move in a mean-field, giving a one-
body term in the Hamiltonian operator. Representation of the many-particle Hamil-
tonian by classical ensembles implies many-body interactions. In fact, the GOE,
now almost universally regarded as a model for a corresponding chaotic system, is
an ensemble of multi-body, not two-body interactions. This difference shows up both
in one-point (density of states) and two-point (fluctuations and smoothed transition
strengths) functions generated by the nuclear shell model. Two-body interactions
imply that many of the many-particle Hamiltonian matrix elements should be zero
(see Fig. 1.1 for an example). Therefore it is more realistic to consider random inter-
actions and then generate many-particle Hamiltonian matrices using the geometry
of the many-particle Hilbert space. With say k-body interactions (for an m particle
system k < m), random interactions imply that we represent the Hamiltonian matrix
in k-particle spaces by a classical random matrix ensemble (or a deformed version
of such). As a classical ensemble is embedded in many-particle spaces, these are
generically called embedded ensembles (EE) or random interaction matrix models
(RIMM). When the embedding matrix is one of the classical Gaussian ensembles,
they are called embedded Gaussian ensembles (EGE). Thus, with GOE embedding
we have EGOE and similarly EGUE and EGSE. In addition, with k-body interac-
tions, we have EE(k), EGOE(k), EGUE(k), and EGSE(k).

With two-body interactions, EEs are often called two-body ensembles (TBRE).
In 1970, TBREs with angular momentum J symmetry were introduced by French
and Wong [50-52] and Bohigas and Flores [53, 54] following the observation that
nuclear-shell-model Hamiltonians give a Gaussian eigenvalue density, in contrast to
the semi-circle density generated by classical ensembles. As French states [55]:

For a better a priori model we can choose an ensemble of k-body interactions (k =2 is
an interesting case) by generating a GOE in k-particle space and using it in the space of
m-particles. For most purposes the resulting embedded GOE (or EGOE) is very difficult
to deal with, but by good luck, we can use it to study the questions we have posed and
the answers are different from, and much more enlightening than, those which would come
from GOE.

The EGOE(k), discussed in detail by Mon and French in 1975 [56], were explored in
a limited manner and exclusively in nuclear physics, up until the early 1990s [57].
However, with the progress in mesoscopic physics and quantum chaos, research
work on two-body random matrix ensembles started growing very quickly from
1996 onwards, with a flurry of papers from the research groups of Alhassid, Flam-
baum, Izrailev, Kota, Shepelyansky, and Zelevinsky [58—67]. As stated by Altshuler,
Bohigas, and Weidenmiiller in a workshop on the chaotic dynamics of many-body
systems held at ECT*, Trento, in February 1997:

The study of quantum manifestations of classical chaos has known important developments,
particularly for systems with few degrees of freedom. Now we understand much better how
the universal and system-specific properties of ‘simple chaotic systems’ are connected with
the underlying classical dynamics. The time has come to extend, from this perspective, our
understanding to objects with many degrees of freedom, such as interacting many-body sys-
tems. Problems of nuclear, atomic, and molecular theory as well as the theory of mesoscopic
systems will be discussed at the workshop.
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2Mg: J™T = 010; d = 325

1 100 200 325

Fig. 1.1 Block matrix structure of the H matrix of the 24Mg nucleus, with J =0, T =0, dis-
playing two-body selection rules. Here 2*Mg is described by 4 protons and 4 neutrons in the shell
model !ds /25 251 /2 and Ly /2 orbits with H preserving angular momentum J and isospin 7. The
total number of blocks is 33, each labeled by the spherical configurations (m, my,m3). The diag-
onal blocks are shown in red, and within these blocks there will be no change in the occupancy of
the nucleons in the three sd orbits. Green corresponds to the region (in the matrix) connected by
the two-body interaction that involves change of occupancy of one nucleon. Similarly, blue corre-
sponds to change of occupancy of two nucleons. Finally, white corresponds to the region forbidden
by the two-body selection rules. This figure is taken from [49] with permission from Springer

Thus, as will be made clear in Chaps. 4-15, many-body quantum chaos is mod-
eled by embedded random matrix ensembles, whence there has been an explosion
of research activity analyzing a wide variety of EEs over the past 15 years. Three
reviews focusing exclusively on EEs are currently available [45-47] and there are
several other review articles in which a good part is devoted to EE [14, 27, 48, 66].
Besides applications in nuclear, atomic, and mesoscopic physics, it has been recog-
nized more recently that EEs are important in quantum information science (QIS)
[68] and in understanding the thermodynamics of isolated finite quantum systems
[69-71]. The embedded ensembles are analyzed analytically using the binary corre-
lation approximation, perturbation theory, the Wigner—Racah algebra of the Lie al-
gebra defining the embedding, and trace propagation methods for spectral variances.
They are also analyzed numerically on a much larger scale using the Monte-Carlo
method.

French recognized that random matrix theory based on embedded ensembles
gives a complete statistical theory for quantum systems—it gives both the spectral
distributions of various physical quantities and their fluctuations, the latter coincid-
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ing with those generated by classical random matrix ensembles. It is worth recalling
French’s own words [72]:

The striking features of spectral distribution methods are their wide applicability and the
connections which they display, and make use of, between statistical behavior, unitary and
other symmetries and their associated geometries, and information content and propagation.
As for the future, it might be good for us not to think of the methods we are discussing as
forming a separate domain with its own special tricks, devices, methods, and assumptions. It
is probably wise instead to think of the whole subject as forming a sub-domain of statistical
mechanics in which special attention is paid to the nature of the model space.

Although there are now many books on random matrices, as cited above, none of
them have a discussion on EEs, and this includes the most recent book entitled The
Oxford Handbook of Random Matrix Theory [44]. Therefore, there is clearly a need
for a book on EEs, and the purpose of the present book is to fill this gap.

The aim here is thus to give an easy-to-understand introduction to EEs so that
young researchers can take up this subject, develop it much further, and apply it to a
whole range of problems in quantum physics. As the book has to be self-contained,
we will give a user-friendly introduction to some of the results of classical ensem-
bles in two chapters. We use this to introduce the so-called binary correlation ap-
proximation (BCA), along with many other concepts, definitions, and notations that
are used in the later chapters. At present, the BCA is the main physically under-
standable mathematical method available for analyzing EEs.

So let us now give a short preview. Chapter 2 classifies the classical GOE, GUE,
and GSE ensembles, and to get started with their properties, nearest neighbor spac-
ing distributions (NNSD) for the 2 x 2 matrix version of these ensembles are de-
rived. In addition, one- and two-point functions (in the eigenvalues) are presented for
general N x N GOEs and GUEs, these being derived using the so-called binary cor-
relation approximation. Some aspects of data analysis are discussed for measures of
fluctuations given by the ensembles, together with the wavefunction structure gen-
erated by the ensembles. The discussion of GSEs is kept to a minimum, as EGSEs
are not yet addressed in the literature.

Chapter 3 deals with various interpolating and deformed classical ensembles,
emphasizing their applications in physics. The results in Chaps. 2 and 3 provide the
necessary background in random matrix theory that is essential in order to follow
the results and discussion on embedded ensembles presented in the remainder of
this book.

Chapters 4-15 are devoted to EGEs with Chaps. 4-8 describing exclusively
fermion systems and Chaps. 9 and 10 boson systems. In Chap. 4, EGOE(2) and more
general EGOE(k) for spinless fermion systems are defined and a method for their
construction is described. The one-point function (eigenvalue density) and some
aspects of the two-point function for the eigenvalues generated by EGOE(k) are
discussed using the binary correlation approximation. The asymptotic form of tran-
sition strength densities, which are also two-point functions, generated by transition
matrix elements, is also discussed.

Chapter 5 introduces EGOE(1 4 2) for spinless fermion systems, i.e., for EGOEs
generated in many-particle spaces by random two-body interactions in the presence
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of a mean field, discussing in particular the transition (or chaos) markers generated
by this ensemble. In the limiting situations with interactions much stronger than the
mean field, EGOE(1 + 2) reduces to EGOE(2).

Chapter 6 deals with EGOE(1 + 2)-s for fermions with spin degrees of freedom,
discussing some general properties of this ensemble. Chapter 7 is devoted to ap-
plications of EGOE(1 + 2) and EGOE(1 + 2)-s, discussed in particular (i) simple
applications to mesoscopic systems and (ii) the EGOE basis for statistical spec-
troscopy in nuclei and atoms. Chapter 8 describes EGOEs with parity symmetry.
The corresponding ensemble is called EGOE(1 4 2)-7. This ensemble is important
in the study of parity ratios in nuclear level densities.

Chapter 9 is devoted to embedded ensembles for spinless boson systems and
Chap. 10 to two-species boson systems and bosons carrying a spin-one degree of
freedom.

In Chap. 11, we consider GUE versions of embedded ensembles for both fermion
and boson systems. Using the Wigner—Racah algebra of the Lie algebras defining
the embedded ensembles, a general formulation for the lower order moments of the
one- and two-point functions for the ensembles with U (£2) ® SU(r) embedding
and random two-body Hamiltonians with SU(r) symmetry has been developed, and
this formulation is presented with examples for fermion systems with » = 1, 2, and
4, and likewise for boson systems with » = 1, 2, and 3. Results for EGUE(k) and
BEGUE(k) with k < m are also presented.

Chapter 12 presents numerical results, for embedded ensembles, for self-
correlations and more importantly for cross-correlations, which are absent in the
classical ensemble (GOE/GUE/GSE) description of many-particle systems.

Going beyond the embedded ensembles considered in Chaps. 4—12, various other
extended embedded ensembles, explored analytically only to a very limited extent
in the literature, are briefly considered in Chap. 13, while Chap. 14 discusses the
new paradigm of regular structures generated by random interactions, which is a
quite different application of embedded ensembles. Chapter 15 focuses on the ap-
plication of EEs to time dynamics and entropy production, as well as the question
of thermalization in isolated finite interacting quantum systems. Finally, Chap. 16
discusses the outlook for the future. There are eight appendices and the survey of
the literature for this book goes up to 31 March 2013.

The main emphasis in this book is on analytical results derived for EEs, while the
discussion of numerical results is kept to a minimum. Although most physics exam-
ples are taken from nuclear physics, some examples from atomic and mesoscopic
physics are also discussed. This book complements our earlier book on Spectral
Distributions in Nuclei and Statistical Spectroscopy, where the focus was on spec-
tral distribution theory, without going into the details of the random matrix basis for
the various spectral distributions [73].
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Chapter 2
Classical Random Matrix Ensembles

2.1 Hamiltonian Structure and Dyson’s Classification of GOE,
GUE and GSE Random Matrix Ensembles

The discussion in this section is largely from Porter’s book [1]. Original contribu-
tions here are due to Wigner and Dyson and all their papers were reprinted in [1].
More recent discussion on Dyson’s classification of classical random matrix ensem-
bles is given by Haake [2]. The classification is based on the properties of time
reversal operator in quantum mechanics [3]. Appendix A gives a brief discussion
on time reversal and the results given there are used in this section. In finite Hilbert
spaces, the Hamiltonian of a quantum system can be represented by a N x N matrix.
Now we will consider the properties of this matrix, with regard to time-reversal T
and angular momentum J symmetries.

Firstly, imagine there is no time reversal invariance. Then we know nothing about
the H matrix except that it should be complex Hermitian. And all such H’s should
be complex Hermitian in any representation differing from any other by a unitary
transformation.

Now, consider H to be T invariant. Then we have, from the results in Ap-
pendix A, T? = +1. Let us say T is good and T2 = 1. Then, it is possible to con-
struct an orthogonal basis ¥ g such that Ty x = Yk is satisfied. Let us start with a
normalized state @; and construct,

Ui =ad+Tad (2.1)

where a is an arbitrary complex number. This gives trivially

2 T2=1
TV, =Tad+Tad®, — VY. (2.2)

Now consider @; such that (¥ ®;) = 0 and construct
U =a' &y +Tad &,. (2.3)
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Then,
(W1]92) = a'(¥1|D2) + (1| Td' ®2) = (a) (W1 T P2)
= (&) (T | T2 ®s)" = (/)" (1 ®2)* = 0. (2.4)
Here we used Eq. (A.12) and T2 = 1. Continuing this way an entire set of orthogonal
Y; can be produced satisfying
TY, =Y, (2.5)

and they can be normalized. In this basis all H’s that are T invariant, i.e. THT ' =
H will be real symmetric,

Hy= (W | H|W)=(TW% | THY) =T |THT'TW) = HY.  (2.6)

Therefore for systems with T2 =1, all H’s that are T invariant can be made, inde-
pendent of J, real symmetric in a single basis.
_ Let us consider the situation with T is good, J is good and T2 = —1. Now, say
T = exp(—inmJy)T and then using T = exp(in Sy)K as given by Eq. (A.23), we
have
(T)2 = exp(—inJy) exp(in Sy) K exp(—im Jy) exp(im Sy) K

=exp(—imLy) exp(—inLy)K2

=exp(—2inLy)=1, 2.7
as Ly is an integer in the (L?, L) diagonal basis. Now we have (T)? =1 and there-

fore we can proceed to construct a 'y basis with TI =T just as in the situation
with 72 = 1. In the I} basis, a T invariant H will be real symmetric,

Hie= (Ix|H|Iy)=(TTy | THI,)*
— <e—iﬂJy TI"k |e—iJTJy THF€>* — (Tl—vk ‘ e—iﬂf)-THT—lTI—.()*

—1_ . : i
P | it Fro e T T
.],'HJF]:H T * *
~ (| HI|TLY*=(Ik | H| IY)
=H},. (2.8)

Therefore if H is invariant under both J and 7', the H matrix can be made symmet-
ric. In fact all such H’s will be simultaneously real symmetric in the I basis and
they remain so by an orthogonal transformation.

The final situation is where T is good, J is not good but 72 = —1. In the sit-
uation we still have Kramer’s degeneracy and given a |v), the |¢) and |T) are
orthogonal. With a basis of 2N states, (i), T|i)) withi =1,2, ..., N, consider

1Y) =D [Cutlm) + Cru—|Tm)]. (2.9)

m
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Then,

Tiy) = [~Cph_lm)+ Cpy|Tm)] (2.10)

and here we have used T2 = —1 with TCy = Cs‘ for any number Cy. As T = UK,
Eq. (2.10) then gives U = [?B]] for each (|m), |Tm)) pair. Also T’ =—-1=
UKUK =—1andthen UU* = —1. Also UU" = 1 and therefore U = —U. Any U
such that U = —U can be brought to the form

0 —I
U=|:I 0] (2.11)

by a similarity transformation. We can also chose
U= 0 —I : (2.12)

Now we consider a unitary matrix S that commutes with 7 = U K. Then

SUK =UKS
SU=UKSK™!
=US" (2.13)
= U=sU(s*)"' =su(s")* =sus™
= SUS.
Therefore with
0 —1I
z_[l 0}, (2.14)
S must be
SZS=12Z. (2.15)

The S that are unitary and satisfying Eq. (2.15) are called symplectic matrices. We
will now construct H matrices that are invariant under S, i.e. symplectic transfor-
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mations. To-wards this end consider

0 T
‘%Z_l[l 0]
0 -1
‘%—Z—[z 0}
A1 0
'73__1[0 —1}
and H in the form, with I = [(’) (1)]’
3
H=H01+ZH1<<7I<
k=1

| Hy—iH; —iH|—H;
T |\-iHi+H, Hy+iHz |°

Then

H=H'" = Hj=Hy, H =—H.

Now THT ! :HandT:UK:[g_OK] will give,

_[ Hf —iHj —iHl*—H2*1|
—iH{+H; Hj+iHj
= Hi:Hi*’ i=0,1,2,3.

Comparing Egs. (2.18) and (2.19) we have,

Now we will prove that, if H is T invariant, then SH S —lis also T invariant,

T[SHS T~ '=TSHS™'T™!
=STHT 's™!
=SHS™ .

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

2.21)

Therefore the quaternion structure of H given by Eq. (2.17), valid for T invariant H
with 72 = —1 and J may not be good, will be preserved by symplectic transforma-
tions, that is by S that are unitary and satisfying the condition SZS = Z. Together

with Eq. (2.20), the H’s are quaternion real (QR) matrices.

The results proved above will give the Hamiltonian form and the corresponding

group structure under (J, T') invariance as follows:
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Table 2.1 Classification of classical random matrix ensembles

Ensemble Transformation matrices Hamiltonian structure
GOE Real orthogonal matrices O H=H*"=H
00=1
GUE Unitary matrices U H=Hy+iH;
vut =1 H0=H§=H0~
Hy=H} =—H
GSE Symplectic matrices S H = Hyl + Zi:l Hy I
SZS=27,88 =1 Hy=H! = Hy
0 -
H,=H ]:k =—Hy,
k=1,2,3

1. For T not good and J is good or not good, the Hamiltonian is complex Hermitian
and the canonical group of transformations is U (N), the unitary group in N
dimensions (N is the dimension of the H matrix).

2. For T is good and J is good, the Hamiltonian is real symmetric and the canonical
group of transformations is O (N), the orthogonal group in N dimensions.

3. For T is good and J is not good but J is a integer, the Hamiltonian is real
symmetric and the canonical group of transformations is again O(N).

4. For T is good and J is not good but J is a half-odd integer, the Hamiltonian
is quaternion real and the canonical group of transformations is Sp(2N), the
symplectic group in 2N dimensions (note that here we are using the A matrix
dimension as 2N as it must be even).

Note that in (1)—(4) above, in a single basis all H’s can be simultaneously made
real symmetric, QR or complex Hermitian as appropriate. In the absence of any
other information except invariance with respect to J and 7 are known, one can
represent the H matrix of a given quantum system by an ensemble of N x N matri-
ces with structure as given by (1)—(4) above. The matrix elements are then chosen to
be independent random variables. Note that for the U(N), O(N) and Sp(2N) sys-
tems mentioned above, the number of independent variables (note that for a complex
number there are two variables—one for the real part and other for the complex part)
will be N2, N(N +1)/2 and N(N + 1) respectively. In the classical random ma-
trix ensembles, called GUE, GOE and GSE respectively, the matrix elements are
chosen to be independent Gaussian variables with zero center and variance unity
(except that the diagonal matrix elements—they are real—have variance 2). Then
these ensembles will be invariant under U (N), O(N) and Sp(2N) transformations
respectively and accordingly they are called Gaussian orthogonal (GOE), unitary
(GUE) and symplectic (GSE) ensembles. Table 2.1 gives for these three ensem-
bles, the corresponding transformation matrices and the mathematical structure of
the Hamiltonians. In order to make a beginning in deriving the properties of GOE,
GUE and GSE, we will start with the simplest 2 x 2 matrix version of these ensem-
bles. Hereafter, zero centered Gaussian variables with variance vZ will be denoted
by G(0, v?).
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2.1.1 2 x2GOE

For a 2x2 GOE, the Hamiltonian matrix is

X1+ X X3
H= [ PR Xz] (2.22)

and the joint distribution for the independent variables X, X» and X3 is
p(X1, X2, X3)dX1dX2d X3 = P (X1)P2(X2) P3(X3)dX1dX,dX3.  (2.23)

The X; in Eq. (2.22) are G (0, v?). Then, (X1 + X») is G(0, 2v?) and (X| — X») is
G(0,2v?%). Let the eigenvalues of the H matrix be A and . Using the properties
of the sum and product of eigenvalues, we have A1 + > =2X; and AjAy = X % —
X% - X%. This gives

§? = (b1 — 22)* =4X3 +4X3. (2.24)
Now xp = 2X, is G(0,4v2), x3 =2X3 is G(0,4v2) and they are independent.
Therefore
1 (x3 +x3)
exp —
27 (402) 8v2

P(x2,x3)dxy dx3 = dxydxs. (2.25)

Transforming the variables x7, x3 to S, ¢ where x, = Scos ¢, x3 = Ssin¢ we have

7S2/8v2SdS 27
P(S)yds =292 / dé. (2.26)
8mwv? 0
Then the NNSD is,
P(S)dS S e s* ds; 0<S<o 2.27)
=—exp ———dS,; <8 < o0. .
402 P T2

Note that, with D denoting mean (or average) spacing,
oo _ oo
f P(8)dS =1, D=/ SP(S)dS =+2mv. (2.28)
0 0
In terms of the normalized spacing S = §/D,
o TS 782\ . %
P(S)dS = — exXP\ — ds; S=1. (2.29)

Thus, GOE displays linear level repulsion with P(S) ~ § as S — 0. This is in-
deed the von Neumann-Wigner level repulsion discussed in 1929 [4] signifying that
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quantum levels with same quantum numbers will not come close. The variance of
P(S) is

= s2
0= -1==-1
D

8v2 4
= —1=—=—12~0.272. (2.30)
2 v? T

Here, used are Egs. (2.24) and (2.28).

2.1.2 2 x2GUE

Here the Hamiltonian matrix is,

| X1+ Xy X3+iXy
H= |:X3 —iXs X1—-X3 2.31)

with X; being G (0, v?) and independent. Solving for the eigenvalues of H, we get
A+ A2 =2X) and LAy = X7 — X3 — X3 — X3. Therefore $? = (A — Ap)* =
4(X3 + X3 + X3). With x, = 2X», x3 = 2X3 and x4 = 2X4, we have x», x3 and
x4 to be independent G (0, 4v?) variables. The joint probability distribution function
for these is

2 2
X5 +)c3

1 + x‘% dordsnd
€X — X2dX3dX4.
Qm)3 220y P 812 24X x
(2.32)
Transforming to spherical co-ordinates i.e. x; = S'sinf sin¢, x3 = Ssinf cos ¢ and

x4 = Scos@ with dxydx3dxs = S2d S sin0dodée,

P (x2, x3, x4)dx2dx3dxy =

SZ T 2
P(S)dS = ————dS in6do d
SIS = ey /0 o /0 ¢

s? 52
exp(——)dS. (2.33)

W TS 802

Note that [ P(S)dS=1and D= [;° SP(S)dS = 8v/+/2m. With S=5/D,

oo 3287 482\ . %

P(8)dS =— exp(——)dS; S=1. (2.34)
7T 7T

Thus, GUE gives quadratic level repulsion with P (S) ~ S for S small. The variance

of NNSD for GUE is,

2 <~ @ 3
c?0)=82-1=— —1="—-1~0.178. (2.35)
D 8
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2.1.3 2 x2GSE

Here H is quaternion real defined by Eqgs. (2.17) and (2.20). These equations and
the choice

_fa b (0 —x (0 'y
H0_<b C)’ H1_<x 0)7 HZ—(_y O)?

(2.36)
_ (0 —z
m=(2 %)
will give
a 0 b+iz ix—y
_ 0 a ix+y b—iz
A=l p_iz y—ix o 0 (2.37)
—y—ix b+iz 0 c
Eigenvalue equation for this matrix is,
a—X\ ix+y b—iz 0 a—A b-—iz
(a—A)|y—ix c—2»x 0 |+®+ig)| b—iz y—ix 0
b+iz 0 c—X —y—ix b4iz c—A
0 a—»XA ix+y
+(y—ix)| b—iz y—ix c—i|=0. (2.38)

—y—ix b+iz 0

Simplifying, we obtain {(a — A)(c — A) — (b* + 22 + y? + x?)}*> = 0 which implies
that A’s are doubly degenerate and they are given by,

L@t El@—o’ +40* +22 +y? +27)]'?

> (2.39)

This gives § = |A; — Xo| = [(@ — 0)? + 4% + 22 + y* + xH)]1Y2. Let us de-
fine X1 =a+c¢, Xo=a —c, X3 =2b, X4 =2x, X5 =2y and X¢ = 2z.
The X;’s are independent Gaussian variables G (0, 4v?). Note that a and ¢ are
G(0,2v%) and b,x,y,z are G(0,v%). Thus S? = X3 + X3 + X7 + X? + XZ.
Transforming to spherical polar co-ordinates in 5 dimensions with hyper-radius
S gives X = Scosfjcosfpcosf3cosby, X3 = Scosbjcosbrcosbssinby, X4 =
S cosf cosbr sinbz, X5 = Scos) sinf and Xg = Ssin6; (volume element being
dv = S*dS cos® 61 cos? 6 cos 03 dBy db, dB3 dby). Then,

S4dS SZ +m/2 3 +m/2 5
PSdS=——F+—5—-~c¢ - cos” 601do cos“ 6,db
D= e Xp( 8v2> f_m 1 lf_n/z 2

+7/2 2
X / cos63dbs f dby. (2.40)
/2 0
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Simplifying, we have
5 52
P(S)dS= ———ex <——)dS. (2.41)
482705 P\ 82

Note that [;° P(S)dS =1 and D = [;° SP(S)dS = 32v/3+/27. With § = §/D,
the NNSD is

P(8)dS$ 25 & 6452 ds; §=1 (2.42)

=——=S5"exp| —— ; =1. .
36737 TP\ o

Thus, GSE generates quartic level repulsion with P(S) ~ §* for § small. The vari-

ance of the NNSD is

= s2 45
G2 =8 —1=25—1="2 _1~0.105. (2.43)
5 128

Figure 2.1 shows NNSD for GOE, GUE and GSE as given by Egs. (2.29), (2.34)
and (2.42) respectively. More importantly, these random matrix forms for NNSD
are seen in many different quantum systems such as nuclei, atoms, molecules etc. In
addition, the RMT results for NNSD are also seen in microwave cavities, aluminum
blocks, vibrating plates, atmospheric data, stock market data and so on. Figure 2.2
shows some examples. It is important to stress that the simple 2 x 2 matrix results are
indeed very close, as proved by Mehta (see [5]), to the NNSD for any N x N matrix
(N — 00). Thus, level repulsion given by random matrices is well established in
real systems.
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Fig. 2.2 Figure showing NNSD for different systems and their comparison with RMT. (i) Nuclear
data ensemble [6]; (ii) chaotic Sinai billiard [7]; (iii) example from Econophysics [8]; (iv) example
from atmospheric science [9]; (v) EGOE(1 + 2) ensemble for fermion systems [10]; (vi) BE-
GOE(2) ensemble for boson systems [11]. In (i) and (ii) results for A3 statistic are also shown
and these are from [12] and [7] respectively. In (iii), the NNSD is for the eigenvalues of the cross
correlation matrix for 30-min returns of 1000 US stocks for the 2-yr period 1994—-1995. Here a fit
to the Brody distribution [Eq. (3.47)] is also shown. Similarly in (iv) the NNSD is for the eigen-
values of the correlation matrix for monthly mean sea-level pressure for the Atlantic domain from
1948 to 1999. Shown in the insect is the cumulative distribution for monthly and daily averaged
correlation matrix. Finally, the embedded ensembles EGOE(1 + 2) in (v) and BEGOE(2) in (vi)
are discussed in detail in Chaps. 5 and 9 respectively. Figures (i)—(iv) (except the NNSD figure for
nuclear data ensemble and this is taken from [7] with permission from Springer) are taken from
the above references with permission from American Physical Society and figures (v) and (vi) with
permission from Elsevier
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2.2 One and Two Point Functions: N x N Matrices

For more insight into the Gaussian ensembles and for the analysis of data, we will
consider one and two point functions in the eigenvalues. Although we consider only
GOE in this section, many of the results extend to GUE and GSE [13]. Also Ap-
pendix B gives some properties of univariate and bivariate distributions in terms of
their moments and cumulants and these are used throughout this book. A general
reference here is Kendall’s book [14].

2.2.1 One Point Function: Semi-circle Density

Say energies, in a spectra, are denoted by x (equivalently, the eigenvalues of the
corresponding H matrix). Then, number of states in a given interval Ax around the
energy x defines p(x)dx, where p(x) is normalized to unity. In fact the number of
states in Ax interval around x is I (x)Ax = dp(x)dx where d is total number of
states. Carrying out ensemble averaging (for GOE, GUE and GSE), we have p(E)
defined accordingly. Given p(E), the average spacing D(E) = [dp(E)]~". If we
start with the joint probability distribution for the matrix elements of Gaussian en-
sembles and convert this into joint distribution for eigenvalues Py (E1, Ea, ..., En),
one sees [1]

PN(EL, Ea, ..., EN) & ]_[ |E; — E;|P exp{—aZE?}. (2.44)
i

i<j

Here 8 = 1, 2 and 4 for GOE, GUE and GSE respectively. Then p(E) is the integral
of p(E1, Es, ..., Ey) over all E’s except one E. For completeness, let us point
out that p(x) = (6(H — x)) = d! Z;Ll S8(E; — x). One can construct p(E) via its
moments Vp = (HP) =d 'Trace(HP).

Using the binary correlation approximation (BCA), used first by Wigner [15],
it is possible to derive for (H?) a recursion relation. In the present book most re-
sults, both for classical and embedded ensembles, are derived using BCA. In fact,
for the embedded ensembles BCA is the only tractable method available at present
for deriving formulas for higher moments (even though this also has limitations as
discussed in later chapters).

In BCA, only terms that contain squares (but not any other power) of a given ma-
trix element are considered and in the N — oo limit, only these terms will survive.
As the matrix elements are zero centered, all M_p for p odd will be zero. Firstly, for
p =2 we have

(H*)=d™' Y HijHji=d™" ) (Hij)*. (2.45)
iJ i,j

Let us say that the variance of the matrix elements for the GOE matrices is v?.

Then the ensemble averaged second moment (note that all the moments are central
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moments as the centroid is zero) is,

M, =(H?)=v’d=(HH). (2.46)
[
In Eq. (2.46) we have introduced a notation for correlated matrix elements. Also
note that we have ignored the fact that the diagonal elements have variance 2v? as
this will give a correction of 1/d order and this will vanish as d — co. The first
complicated moment is My or (H*). Explicitly,

(HY)=a! Z H;jH jx Hy Hi . (2.47)
i,j,k,l

Then, ensemble average gives three terms in the above sum (it contains product of
four matrix elements): (i) first two H matrix are correlated and similarly the last two
matrix elements; (ii) the first and third and similarly the second and the fourth matrix
element are correlated; (iii) the first and fourth and similarly the second and the
third matrix element are correlated. Symbolically they can be written as (H |_JH H |_|H )s

(HHHH) and (HH H H). Their values are

| -
T =™ 3 iy = ' = (7))’
ij
_ - 1T\ 2
(HHHH)=d IZHinjiHinji=U4d:d H({H2) (2.48)
= | i
(HHHH)=d""Y H;HjHgHji = v*a® = ((H2))*.

ijk

Thus the second term that involves cross correlation with odd number of H’s inside
[in the second term in Eq. (2.48), there is one H in between] will vanish as d — oo.
Then, we have

My =(H*) = v'd* = 2(HHHH) =2({H?))". (2.49)
L1 L

Note that in Eqs. (2.45)-(2.49), the correlated H’s are joined by the symbol ‘LI’
Continuing the above procedure we have [16, 17], valid for all three ensembles with

the normalization (H2) =1,

ZW

p—2

- Y ()

=0

= Z M. M, 5. (2.50)
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The solution is M2,+1 =0 and M, = (v+ 1)~ (2v”). They are the Catalan numbers

and it can be verified easily that they are the moments of a semi-circle. Thus p(E)
is a semi-circle,

m=i(4—x2)1/2=lsim/f(x). 2.51)
2 T
Here 1 (x) is the angle between the x axis and the radius vector; x = —2cos ¥ (x),
0 < < 7. Note that p(x) vanishes for |x| > 2 and M, = 1. Figure 2.3 shows an
example for the semi-circle.
Given a p(x), one can define the distribution function F(x),

F(x)= / p(y)dy. (2.52)

With p(x) being discrete, as the spectrum is discrete, F'(x) is a staircase. Note that
F(x) counts the number of levels up to the energy x and therefore increase by one
unit as we cross each energy level (if there are no degeneracies).

Another important property is that the exact density p(x) can be expanded in
terms of p(x) by using the polynomials defined with respect to p (x),

p(x) =M{1 +) S P (x)}. (2.53)

¢=1

If we know the moments M, of p(x), the polynomials P, (x) defined by p(x) can
be constructed [18] such that fj_o? p(x) Pp(x) Prr(x)dx = d¢ . Using this one can
study level motion in Gaussian ensembles as described ahead.
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2.2.2 Two Point Function S*(x, y)

The two point function is defined by

SPx, ) =px)p(y) —px)p(y). (2.54)

If there are no fluctuations S”(x, y) = 0. Thus S® measures fluctuations. The mo-
ments of S” are

My, :[/xpqup(x,y)dxdy

= (H?)(H9)— (HP)(HY). (2.55)

To derive $”(x, y) (also M ,,) we consider, as in [13, 17] the polynomials defined by
the semi-circle, i.e. Chebyshev polynomials of second kind U,, (x). They are defined
in terms of the sum,

[n/2]
Up() = (=)™ (” ;m>(2x)"2m. (2.56)
m=0

They satisfy the orthonormality condition fjll (X)) Up(x)Uy (x)dx =1/2 81y With

w(x) = +/1 — x2. Substituting y = 2x in the orthonormality condition and using
Va(y) = Un(y/2), we obtain,

+2 .
/2 dyp M Va () Vin (¥) = 8ums

[ N .
p(—y)zi l_y_zsmgﬂx)'
T 4 T

Note also that Uy (x) = g [0 (0 (0)]"]: @y = (=1)"2"+H TH2 g (x) =
1 — x2. Similarly, V; (x) = (=D [siny (x)]~ ! sin(¢ + D (x).

Returning to M, it is seen that in (HP?)(H?) evaluation (again we use BCA)
it should be recognized that the correlations come when say ¢ number of H’s in
H? correlate with ¢ number of H’s in HY. When ¢ =0 we get {(HP)}{(H4)}.
Therefore

(2.57)

<(p.,q)
My =(HP 9] - = 3w e

and /Lg are obtained by a counting argument. French, Mello and Pandey [17] showed
that (see also [19]),

! = P =_¢1 pi PYZRY
e = ((p—;“)/z) ==¢ | A {p@) Ve () fdx. (2.59)
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Now let us evaluate (H¢)(H¢). Firstly (H¢) = d~! Zfljk _1HijHji ... Hy;.
Then the number of indices are ¢ and the number of terms in the sum are d?.

In (HY)(H¢) there will be d* terms of the type (H;;Hj;)(HjxHy;).... Choos-
| —

ing v2d = 1, we have <H2) vZ =v? = 1/d. Therefore (H%)(H’) = 5d%/d* =
ij d
1/d?. However for every H;; there are (H;jH;;) and (H;;Hj;) for GOE. Both

give v? and therefore (HS)(H¢) = 2/d?* for GOE. In case of GUE HijH;j =
P _I_I _ J— J—
(a+ib)(a+ib)=a?>—b>+2iab=0and H;jHj; = (a +ib)(a — ib) = a?>+ b =
1 (|1H;j1> = vfj =2 and v?d = 1). Thus (H¢)(H¢) = 2/Bd?. In addition there
L
is cyclic invariance and therefore there is an additional ¢ factor [for example,

HyyHy @ Hy1Hiz, HioHa3 H3y © H3 H3yp Hiz @ H3p Hiz Haz). Then the final result
is,

T 2
(HE)HE) = s (2.60)
Lo b pd?
with B =1 for GOE and g = 2 for GUE. Putting this result in the expression for
My we see that

My = ;M%Z// Mmp@NQl@HQ1@MMU
¢=1
ﬂdQZc”//xf’ ——p(x)p(y)vg (V1 (7)dxdy.
¢=1
(2.61)
Then by inversion we get,
2 0
§P oy " 1GOE355—5—{p<);my)§:; Veo1 () Ve 100}
¢>1
2
= SF@JO=Eyﬂﬂp@%§:?4W;NUW—ﬂw} (2.62)
¢>1
=55 25 sy ()sing Yo ().
¢>1

Note that S¥(x,y) = [* [7. 8P, y)dy'dx' = F(x)F(y) — F(x) F(y). The
sum can be simplified by introducing a cut-off ¢ ~*¢ and extending the sum to ¢ =1
to oo,

d
> ¢ singynsingyn
=1

Z Lexp(—a¢) sin¢ ¥y sin ¢
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= Z[/ e_“dz:l sin Y sin ¢y
r=1-"¢

{l i[/oo “dz} [emic =) _ e—i£(1//1+1//2)]}
2

=1

e

1 ©
_ —{(Z+i(1//1—1/f2)) _ @i +yn))
= Re{ > E fa e }dz}

w
—_

_ Rel [ln[ e CHWI=ID % [n[] — o~ GH 1TV ]%]

1 In 14 e72% — 2% cos(Yy + V¥2)
T4 14e 22 —2ecos(Yy —Yn)’

(2.63)

where we have used the property that Re[In(1 +z)] = % In[(1 4 z)(1 4 z*)]. Finally
have,

1 In 14+e 2 —2¢ % cos(yY) + ¥2)
272d% " 14 e72% —2¢=%cos(Yy — V2)

SFx,y) = (2.64)

Let us consider the structure of S¥ (x, y) when x ~ y. Firstly the number of levels
r in the energy interval Ax = dx =x — y is d p(x)dx. But 1 — x2/4 = sin> ¥ gives
x = 2cos . Therefore, dx = 2sinydy and

r=dpx)dx = [; sin w:|2sin vdy. (2.65)

Then, SF(x, y) is, with x ~ y = sinyr, ¥ + Yo ~2¢ and | — Yo ~ 8¢,

a~1/d 1 2 —2cos2y

§ey) 2m2d? n2—20055w
1 sin Y 1 2sinyr
= In - ~ n
72d? " sindy/2  m2d? Sy
1 4d sin’
= In——. 2.66
22 7r (2.66)

In the last step, Eq. (2.65) is used. Therefore the behavior of SF(x, y) is that it
behaves as Inr. Now let us consider the self-correlation term S¥ (x, x) which deter-
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mines the level motion 8x2/52 =d28¥ (x, x) in GOE,

1 14e72% —2¢ % cos2yr
SF(x,x)= 1
T R TS PR yn

a~1/da 1 2(1 —cos2y) _,
In e ¥=1-—
27242 (1 —e—%)2

-2
_ % a 45‘%‘” (2.67)
2m=d o

1 2
o) In(2d sin )

1 1
= sF (x,x)= Pyl ln2dsm1ﬂ_ -y ln2nd,o(x)
Before going further, it is useful to point out that the moment method with BCA
used for deriving the asymptotic form of one and two point functions extends to
many other random matrix ensembles. A recent discussion on the power of the mo-

ment method in random matrix theory is given in [20].

2.2.3 Fluctuation Measures: Number Variance X*(r)
and Dyson-Mehta A3 Statistic

P(S), the nearest neighbor spacing distribution and its variance 02(0) are mea-

sures of fluctuations. Using S¥ (x, y) we can define a new measure called ‘num-

ber variance’ X2(r). Say in a energy interval x to y there are r levels, then
=d[F(y) — F(x)]. The statistic X 2(r) is ensemble averaged variance of » and

22(r) =r2 = (7)?
=d*[(F(y)— F(x))’ = (FO) — F0)’]

= d2[F2(y) - FQ) + F2(x) - Fx) —2(FOF() — F®) F))]
=d*[SF(x,x) + ST (y,y) — 287 (x, y)]. (2.68)

Thus X2(r) is an exact “two-point measure”. Using the asymptotic expressions for
SF(x,x) and SF (x, y), we obtain

[ 2 , 2 ddsin’y
| oz In2dsing — ——5In———
T

2 _
2= I R

2 r
b4 2sin” ¢
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Thus 22 (r) behaves as Inr and hence the GOE spectrum is rigid. The exact results
valid at the center of the semi-circle are:

2 2 n? 1
ZGOE(V):TL.Z ln2ﬂr+l+y—§ +O ;
(2.70)

1
X2up) = F[1nzm +1+y]

where y is Euler’s constant. Other important measure is Dyson-Mehta A3 statistic
and importantly, it is related to X2 (r) and hence it is also a two-point measure.

Dyson and Mehta Az statistic [21] is defined as the mean square deviation of
F(E), of the unfolded spectrum, from the best fit straight line and A3(7) corre-
sponds to the same but over a spectrum of length 7D. The ensemble averaged A3 (77)
is then defined similarly,

x+L

A_g(ﬁ)zA_g(ZL)zmin[i/ [dF(y)—Ay_B]Zdy} . @I

-L (A,B)

Here L = ’22 The As(n) statistic is an exact two-point measure. In fact it can be
written as an integral involving X2(r). This is proved in Appendix C. Using the
GOE (similarly GUE) expression for X 2(r) and applying Eq. (C.8), we obtain the
following expression for A3 (%) for GOE and GUE,

— 1 _ 5 n? 1
[A3(n)]GOE = ;[IH(ZTL’H) +y— i ?] + 0(%>’
2.72)

— 1 _ 5 1
[4:)]gop = 53 |:ln(2nn) +y - ﬂ + 0<ﬁ>.

For a novel application of Az (n) statistic, see [22].

2.3 Structure of Wavefunctions and Transition Strengths

2.3.1 Porter-Thomas Distribution

Given a transition operator 7 (this should not be confused with the time reversal
operator ‘T’ used before or the isospin label ‘T’), transition strength connecting
two eigenstates is defined by [(Ef | T | E;)|?. In nuclei T’s of interest are electro-
magnetic (magnetic dipole, electric quadrupole for example), one particle addition
or removal, Gamow-Teller operator and so on. Similarly, in atoms and molecules
dipole operator is very important. It is also important to recognize that the widths
of resonances also measure transition strengths. Leaving detailed discussion on
transition strength distributions to Ref. [13], here we will give only some basic
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results. One can think of T|E) to be a compound state and represent it by a ba-
sis state |i). Therefore, statistical properties of transition strengths will be same
as those of the expansion coefficients C iE of the eigenstates in terms of the basis
states |i),

d
E)y="Y_CFli). (2.73)

Now an important question is: what is the distribution of |x; |2 IC; E |2 First, let us
consider the joint distribution P(xy, x2, x3, ..., Xg) of x1, x2, x3, ..., xq for GOE.
Because the GOE is an orthogonally invariant ensemble, the eigenvectors uniformly
cover the d-dimensional unit sphere. Then the normalization condition ) ; |x; 12=1
gives,

rajs
P(X1, X2, X3, ..., Xg) = ();/2) (Z 2—1) (2.74)

Now, integrating over all but one variable (say x; and denote it by x) will
give

p(x)dx re (1- xz)%dx (2.75)
VA rh ' '
Then, in the d — oo limit we obtain,
[d dx?
pox)dx =, — exp—idx, —00 < x < 0. (2.76)
2 2

Thus, asymptotically x will be zero centered Gaussian variables with vari-
ance 1/d. As |C1.E|2 should not depend on the index i and ), |CiE|2 =1 will
give us the significant result that for GOE |CZ.E|2 = 1/d. Therefore, the distri-

bution of the renormalized strengths z = ICI-E|2/ ICiEl2 is, putting d x2 =z in
Eq. (2.76),

o ()dz = \/%z_% exp(—%)dz, 0<z<o© 2.77)
and this is nothing but X12 distribution. Equation (2.77), for GOE, is called Porter-
Thomas (P-T) law for strengths [23]. Thus locally renormalized strengths, z =
|c;'.|2/|c;i|2, follow P-T law; note that [ zo(z)dz = 1. The GOE P-T law was
well tested in many examples as shown in Fig. 2.4. Similar to GOE, for GUE the
P-T law is X22 as C i will have real (say A) and complex (say B) parts with each of

them being G (0, v2=1/d) and independent; then |C’ |2 = A2+ BZ.
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Fig. 2.4 Porter-Thomas
distribution for strengths
compared with: (a) neutron
resonance widths in '67Er
[13]; (b) nuclear shell model
transition strengths generated
by a special two-body
transition operator [10];

(¢) widths from a microwave
resonator [24]. Figures (a)
and (c) are reproduced with
permission from American
Physical Society and (b) with
permission from Elsevier
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2.3.2 NPC, S"/° and Strength Functions

With eigenfunctions expanded in terms of some basis states (they form a complete
set) |k), let us deﬁr_le the following: (i) NPC (denoted as &;)—number of principal
components; (ii) S"/°—information entropy or £ y—localization length. They are,
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with |E) = Y"4_, CF k),

-1
= cf 8 E—-E ,
&(E) = [dp(E);E 1 ( )}

tn(E) =exp[(5™°) ] / (0.484), (2.78)

sinfo (g )——mgzyq{ *in|cE [*5(E - E).

In Eq. (2.78), degeneracies of the eigenvalues E are taken into account. It is impor-
tant to stress that S/ is the first and NPC [or the inverse participation ratio (IPR)]
the second Rényi entropy introduced in chaos literature [25, 26]. For this reason
NPC is denoted by & (E). Similarly, information entropy is also called Shannon en-
tropy [27]. As we shall see ahead, S”/° and In&,(E) carry the same information
and their difference, called structural entropy, is also some times used (with Si”f o

or &) as a chaos measure; see [26] and references therein. For GOE, |Ck |2 = 7 L and

Ck are Gaussian variables G (0, d) Therefore |Ck |4 = 3(|Ck |2)2 ;’2 and then

-1

_ (& 3 d
&(E) = Zﬁ =5 forGOE. (2.79)

k=1

Thus & (E) is independent of E for GOE. Similarly S7/¢(E) = —d|C,f|2ln |C1§|2
where C,f are G (0, %). Then,

—_— o0 _a2 1
Sinfo(E) = — / x2Inx%e 22dx; ol=-
270 J- d
8do? [ .
=29 2[In +ln\/§a]e_y2d . x=+20
ﬁ y y y y
0
8 y? -2
:—ﬁ A ylnye dy +1In Ze dy
8 o0
=—— 2lnye >’ dy —In=
N y“Inye y— nd

o0

: d
= exp(S’"f") =5 exp—¢, exp—¢ = exp( \/_ x2 lnxeXde)

=4expy —2>~0.964

= expS"™°(E)=0.484, Ly(E)=1.
(2.80)
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Thus for GOE, S"/° = In(0.48d) independent of E and the localization length is
unity by definition. The NPC and $*/¢ formulas are well verified in numerical
examples.

Besides NPC and $7/¢, localization properties of wavefunctions can be inferred
from strength functions. Given C ,f , strength functions are defined by,

F(E)=Y_|CE 8(E - E') = |6F 'dp(E). 2.81)
E/
where |<ng |2 denotes the average of |C ,f |2 over the eigenstates with the same en-
ergy E. A commonly used form for strength functions is the Breit-Wigner (BW)
form and its derivation is given in Appendix D. Many other aspects of transi-
tion strengths and strength fluctuations are discussed in [13, 28-30]; see also Ap-
pendix E.

2.4 Data Analysis
2.4.1 Unfolding and Sample Size Errors

In the analysis of data one has to pay attention to the following facts: (1) data is
available for a given system (say a nucleus); (2) the sample size (number of lev-
els) is usually small (~100); (3) over the sample, the density may vary. Point (3) is
true for shell model data or any other model data. To take care of (1) and (2) it is
possible to invoke ergodicity and stationarity properties of the Gaussian ensembles
(GE-GOE, GUE or GSE) [13, 31]. Due to ergodicity, we have a permit to compare
ensemble averaged results from GE to spectral averaged results from a given spec-
trum. Similarly due to stationarity, the measures (statistics) of fluctuations will be
independent of which part of the spectrum one is looking at. To the extent that the
spectra are “complex”, we can use “stationarity” to combine the values of the mea-
sures (with appropriate weights) to increase the sample size. Let us first consider
point #(3). When p(x) is varying, it is necessary to remove the “secular variation”
before the data is analyzed. This is called “unfolding”. For this we have to map the
given energies E; to new energies &; such that the ¢; spectrum has constant density.
Say ¢; = g(E;) such that &; has unit mean spacing on the average in the interval
E; + %. Then, with AN levels in the interval Aeg,

de 1 g AE . _AE
AN~ an|® 2 )¢ 2

=22 ) = ——4(E)
= g'(E)=Np(E). (2.82)

Now integrating Eq. (2.82) on both sides will give the map,

¢(E)=NF(E) = ¢ =NF(E). (2.83)



2.4 Data Analysis 33

The &;’s given by Eq. (2.83) will have D = 1. Significance of the physically (the-
oretically) defined p(E) in unfolding has been discussed by Brody et al. [13] and
more recently by Jackson et al. [32]. Normally one tries to fit F(E) to a smooth
curve, by a least square procedure, to obtain F(E), but often this is not proper as
fluctuations depend on F (E) used in the unfolding procedure.

Coming to the sample size errors, let us consider a measure w calculated over say
p levels. Say the theoretical value of w (for infinite sample size) is w and its vari-

ance var(w). Then the figure of merit f = ~ var(w), x 100. Now w — w{l £ 1{;—0}.

(w)p

For X2 (n), the Poisson estimate gives f ~ \/? x 100, thus f — O for p — oco. In
practice also used are overlapping intervals. Then it is seen via Monte-Carlo calcu-
lations that f reduces by 0.65. Applying the same size error to the GOE analytical
results, it is seen that theory and experiment agree almost exactly in the case of
Nuclear Data Ensemble (NDE) constructed by combining neutron resonance data
from many nuclei [6, 12, 33]. Finally, in practice, for A3(7z) and D calculations, it
is more useful to use the simple formulas given by French, Pandey, Bohigas and Gi-
annoni [13, 34]. Given a sequence of (ordered) energies (E1, E», ..., E,), the mean
spacing D is [13],

_ 12 "/ n+1
D= prPcR §<z - T)E (2.84)

Similarly consider A3(L) over an energy interval o to a + L. Defining E; to be
E;=E; — (@ + %), we have [34],

n? 1| < 2 3n | &
. o N
mes-to-[] + 5[5

3 n 2 1 n

—F[ZE?] +Z|:Z(n—2i+1)E,1. (2.85)

i=1

i=1

2.4.2 Poisson Spectra

When comparing GOE (or GUE, GSE) results with data, it is important to consider
the Poisson case, i.e. uncorrelated spectra so that the effects due to GOE correla-
tions will be clear. We can generate a Poisson spectrum as follows. First generate
a set {s} such that s is a random variable following exp —x probability distribu-
tion. Then choose x; =0 and x,,41 = x, + s;; n =1,2,3,... and draw s, from
{s}. Now the nearest neighbor spacing S = s,,. Therefore P(S)dS for the sequence
(x1,x2,x3,...)1s

P(S)dS = exp—SdS. (2.86)
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An important question is what is X2(77) and Az (%) for a Poisson spectrum. Before
proceeding further let us mention that random superposition of several independent
spectra leads to Poisson as proved by Porter and Rosenzweig [35]. In order to derive
the results for X2(%) and A3z (%) for a Poisson spectrum, it is useful to consider the
R>(Eq, Ey) and Y, (r) correlation functions for an unfolded spectrum. R>(Eq, E»)
is the integral of P(E1, E>, ..., E,) over E3, E4, ..., E, and Y3 is simply related
to Ry,

Ry(x1,x2)=N(N — 1)/dX3dx4...dePN(x1,x2, Lo XND,
(2.87)

Yo(x1,x2) = —Ro(x1, x2) + R1(x1)R1(x2).

Note_that Ri(x1) =1 =Yi(x1) and the x’s are unfolded energies, i.e. mean spac-
ing D = 1. The important point is that for a Poisson Y>(r) = 0 and therefore, as
SAL)y =L~ [ (L —r)Ya(r)dr,

— L
X L) =L, AsL)= i (2.88)
for a Poisson. It is also useful to mention that for pseudo-integrable systems (which
possess singularities and are integrable in the absence of these singularities) [36—39]
follow semi-Poisson statistics [40, 41],

P(S)dS =4Sexp—25dS. (2.89)

This form is also seen recently in the low-energy part of the spectra generated by
two-body interactions [42].

2.4.3 Analysis of Nuclear Data for GOE and Poisson

Bohigas, Haq and Pandey [6, 12] analyzed slow neutron resonance, proton reso-
nance and (n, ) reaction data (for level and width fluctuations) and established
that GOE describes, within sample size errors, almost exactly the experimental
data. They constructed nuclear data ensemble (NDE) with 1762 resonance energies
corresponding to 36 sequences of 32 different nuclei and they contain: (i) slow-
neutron resonance 1/2% levels from 6400687y 114Cq, 152,154y 154.156,158,160Gq,
160’162’164Dy, 166,168,170Er’ 172’174’176Yb, 182,184,186W’ 186’19008, 232Th and 238U
targets; (ii) proton resonance 1/2% levels (1/2~ also for Ca) from **Ca, “8Ti and
6Fe targets; (iii) (1, y) reaction data on '77-172Hf and 233U giving two sequences of
J7 levels. Similarly considered also are 1182 widths corresponding to 21 sequences
of the above neutron resonance data. Comparisons are made with the GOE Wigner’s
law P(S)dS = (wS/2)exp(—n S2/4)dS for nearest neighbor spacing distribution
(NNSD) and Porter Thomas (P-T) X12 law P(x)dx = (1/+/2mx)exp(—x/2)dx for
widths; S is in units of average mean spacing (D) and x is width (rate of transition
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from a initial state to a channel) in units of average width. Similarly, the GOE num-
ber variance X 2(L) and A3(L) are also seen to agree (for L < 20) extremely well
with NDE. In the analysis sample size corrections are made as discussed earlier.
Unlike the resonance energies, the resonance widths analysis appears to have some
uncertainties (see [6] and Appendix E).

Garrett et al. [43] analyzed NNSD for high-spin levels near the yrast line in rare-
earth nuclei. Considered are 3130 experimental level spacings from deformed even-
even and odd-A nuclei with Z = 62-75 and A = 155-185. As expected P(S) is seen
to follow regular Poisson form. Following this study, Enders et al. [44] analyzed
NNSD for scissors mode levels in deformed nuclei and found Poisson behavior as
scissors mode is a well defined collective mode. Used here are 152 levels from 13
heavy deformed nuclei []46’148’150Nd, 152,154Sm’ 156’158Gd, 164Dy, ]66’168]':‘1‘, ]74Yb,
178,180Hf] in the energy range 2.5 < E; < 4 MeV with the constraint that there must
be at least 8 levels in the given energy interval in a given nucleus. Thus low-lying
levels of well deformed nuclei and scissor states, being regular, follow Poisson as
expected. Finally, Enders et al. [45] analyzed also the electric pigmy dipole reso-
nances located around 5-7 MeV in four N = 82 isotones. They made an ensem-
ble of 184 1~ states and an analysis, though difficult due to many missing levels,
has been carried out. The authors conclude that there is GOE behavior. Thus, level
fluctuations bring out the expected difference between the scissor mode and pigmy
dipole resonance.
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Chapter 3
Interpolating and Other Extended Classical
Ensembles

Changes in the nature of level fluctuations in the situations such as (i) a symme-
try is gradually broken, (ii) two good symmetry subspaces are gradually admixed,
(iii) ordered (integrable) spectra gradually become chaotic and so on are studied by
using interpolating and/or partitioned random matrix ensembles [1-7]. A simple yet
useful approach for deriving the NNSD’s for interpolating ensembles is to extend,
as pointed out in [8—12], the simple Wigner’s 2 x 2 matrix formalism. The appropri-
ate 2 x 2 random matrix ensemble for Poisson to GOE and GUE and GOE to GUE
transitions is [8, 12],

.
H:|:a(X1+X2)+pvk aX3z+ia'Xy ] 3.1)

aXs3—ia'Xy a(X| — X3) — pvi

In Eq. (3.1) X1, X», X3 and X4 are G(0, v2) variables and the usefulness of p and
A will later become clear. The H matrix in Eq. (3.1) for A =0, o’ =0 is GOE,
A=0,a =« is GUE, and X; =0 and X a Poisson gives a Poisson spectrum. Thus
the matrix in Eq. (3.1) interpolates Poisson, GOE and GUE (in fact also a uniform
spectrum). Given A and X, the two eigenvalues of the H matrix, we have

(k1 —22)* = $? =4[(aX2 + pva)* + (¢ X3 +o*X])]. 3.2)

Let us define
x3 =2aX>+2pvk — G(vak, (20111)2),

x3 =2aX3 — G(0, 2av)?), (3.3)
x4 =20'X4 — G(O, (205’1))2).
Therefore,
dxydx3dxy
P(x2, x3, dxydxzdxq = -
(x2,x3, x4) dxadx3 dxy R 200 (2 D)
x2 — 2pvA)? + x2 x2
X exp — (x2 pvi) 34 4 . (34
2Q2av)? 22a'v)?
V.K.B. Kota, Embedded Random Matrix Ensembles in Quantum Physics, 39
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Changing the variables (x2, x3,x4) to (S, 6, ¢) such that x; = Ssinfcos¢, x3 =
S'sinf sing, x4 = Scosf, we get

P(S)dS $*ds LS /Zn P ¢ indcosg | dop
= €X — X ——= D S1Ino COS
(2m)3/22av)2(2a’v) P{7 202 0 P1 2002
X/” 1 S$2sin%6 N S2cos26] . 040 35)
exXp —— Sin . .
0 P73 Taa2? 4a'v?

The integral over ¢ is 27110( Ssm@) where Iy is Bessel function. With
S cos @ = z, the final result is,

Sds pa? 52
P(S:\)dS=——"" I
( ) 4v302a/ 2 exp( 202 81)20‘2)

S (a/)2 _ 0[2 )
x/ dzlo<2 5V S2 — )exp[iz i| (3.6)
0

81)20[2(0(/)2

With A =0, « = 1 and &’ — o« we have GOE to GUE transition. Similarly, assuming
a distribution f(A)dA for A (with A independent of X;,i =1,2,3,4), Eq. (3.6) de-
fines for example the Poisson to GOE and GUE interpolations. Combining Eq. (3.6)
with

+oo
P(8)dS = |:/ P(S: A)f(k)d)»]dS

—00

for Poisson f(A)dA = e *dr for0<i<oo and 0 fori <O 3.7

gives the spacing distributions for Poisson to GOE and GUE. With f(1) =1 for
0 <X <1andO0 for A <0 and also for A > 1 will give uniform to GOE and GUE
transitions; Ref. [13] gives a numerical study of uniform to GOE and GUE transi-
tions. It is also possible to consider f(A) = §(A — A.). Note that we have always
/ fooo f(X)dxr = 1. Before going further, it is important to mention that an extension
of the matrix in Eq. (3.1) including GSE with 4 x 4 matrices was given in [14].

Before going further, it is important to point out that the results in Refs. [15-18]
are used in the simplifications of various integrals we need ahead. A list of some
useful integrals are,

o0
In(a,c)=/ x”[exp—axz]CD(cx)dx,
0

c
T 2a(a+ V2
1 1 . ¢ c (3.8)
I - BEVE) VN b
2= zf[ 3 tan a1/2+a(a+cz):|
I 1 c " c
37T 242 at+c2  dala+c2)3?
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In Eq. (3.8), @(x) = % f(f exp —12dt is the Error function. An integral with the
Bessel function I is,

/Ooo[exp —a*t? ]t Iy (bt) dt = F;’;{z)]ﬂ (n/2,1,b%/4a%). (3.9
Finally,
o0 1 a? a
/0 [exp —at]D (bt)dt = Eexp(m>|:l _¢<E):| (3.10)

The hyper-geometric function | F; in Eq. (3.9) is also denoted as M (u/2, 1,
b%/4a?).

3.1 GOE-GUE Transition

3.1.1 2 x 2 Matrix Results

Substituting A =0, @ = 1 and o’ — « in Eq. (3.6), spacing distribution interpolating
GOE to GUE is obtained [1, 8],

P (S)dS =dS S S o [Lz g 3.11)
) =dS————  _exp——— w237 9| :
GOE-GUE 121 —a) 2 P g2 8a2u?

Using Eq. (3.8) it is seen that P(S) is normalized to unity and the average spacing
Do = [;° SP(S)dS is,

1 V1-—a?
_ 2 tan—l [20202(1 _ o2
D, = m[ 8v“tan " + ./ 8a*v (1 o ):| (3.12)

Note that Dy is the average spacing between the unperturbed levels,
Do =+V2mv. (3.13)

To proceed further it is useful to introduce the transition parameter A which is the
r.m.s. admixing GUE matrix element o>v? divided by D(%,

o?v? o

A= =—. (3.14)
2
D0 2

Note that A =0 gives GOE and A = 1/27 gives GUE. The importance of the A
parameter is that it will allow us to extend the 2 x 2 matrix results to N x N matrices;
see [1, 8, 12] and the results ahead. Although this was pointed out first in [8], it was
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rediscovered in [9, 10]. It is easy to see that P(x)dx with x = §/Dg will depend
only on A. For example, x = S/ Dy is

T 2 |:t Y LN, T A)]
X = — | 1an _— T — 47T
71 =27 A 2 A

2 A+ 0(432). (3.15)

Now we can write down the expression for the variance 02(0: A) of the NNSD.
Note that from Eq. (3.2) we have easily $2 = 8v? + 4a>v? and then,

s2
o2(0:4) = — —1
(5)?
8 |_Aatma)
(D)2 ax
4
4« <— - 1) —44
T
= ¢2(0:0) —4A. (3.16)

Equation (3.16) extends to any N x N matrix and for most purposes this small A
result is adequate for data analysis.

A different parametrization that gives GOE for A = 0 and GUE for A = oo is
to put in Egs. (3.1), 3.6), A =0, ¢ - o ++/1 — o2, @' — o and finally divide all
the matrix elements by /1 — 2. This gives GOE + [a/+/1 — «?] GUE ensemble.
Then

1 [ o :|2 2 2
A= —|—|v", Dj=+2nv. (3.17)
DiLy/1— a2

Now, with § = §/Dy, the NNSD is
P(S)d@:dﬁ%«/1+2nA S‘exp—%32q§(§/\/8A). (3.18)

Equation (3.18) gives correctly the GOE and GUE NNSD for A =0 and A = o0;
note that @ (ax) — 2(ax)/+/m as a — 0. The variance of the NNSD, with A defined
by Eq. (3.17), is

oGoe-Gue(0: A)
. n(l14+37A) _1
(1427 A) tan— {2 A)~1/2} + 2w A2

4
A<l (——1)—4A=02(0:0)—4A. (3.19)
T
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It is important to mention that all the results given here reproduce exactly the results
discussed in [9, 10]. Finally, it should be mentioned that 2 x 2 GOE-GUE transition
results were first given in [19] although the transition parameter was not identified
by the authors.

3.1.2 N x N Ensemble Results for £*(r) and A3(r)

Let us consider H = HR 4 ia H! and then o = 0 gives GOE and « = 1 gives
GUE. The matrix elements of H satisfy the following properties (with a = H,.If and

_ 1
b=H}),

HijHij = (a+iab) (a+ia b) = a2 — o2b?,

- — 3.20
H,-jHj,-z(a—i—iozb) (a—iab)=a2+oe2b2. ( )
Using the normalization vd(l+a?) =1 (a_2 b= v?), we have
iy 1 —a? o
VU T d(1 4 a?) T d]
1
Hinji = —, (32])
d
_ 1 —a?
T=1 +a?

In the product (H¢)(H?¢) there are d number of H; ; terms and each with its partner
L

comes ¢ times. Hence,

Tmomn & o[ L ] ¢ oA S
[ = 5 a [d—ﬁd—g}_d—z(un )=

Ar=1+nb

(3.22)

Equation (3.22) correctly reproduces the values for « = 0 and o = 1 given in
Eq. (2.60). Now, extending Eq. (2.62) we have

d
1
STy = 5 ) At singy (x) sincy ()
¢=1

1
72d?

12

SEUE(. Y) + = Y () ¢ singyr (x) singy(y)
¢=1
L 10 = 20 cos (o) + ¥ ()
47242 7 1+ ()2 — 2 cos(¥ (x) — Y ()
l N (1 _ n/)2 +4n252n/ )
ﬂ2d2 (1 _ n/)z + rzn’/4n2d2ﬁ4 ’

= SGue®. ») +

ré<>d SguE(xa V) + 7 (3.23)



44 3 Interpolating and Other Extended Classical Ensembles

with

x—y| 'S D,
(3.24)

7S ) =1 exp(—t/dsin’ ) = nexp(—7/dn*p?).

In Eq. (3.23) we have introduced an exponential cut-off in ¢ in order to extend
the ¢ summation to co. The details are as follows: With a cut-off =% the ¢ sum
is extended to oo as in the case of GOE. Then née~%¢ = (ne=%)¢ = (y')¢. The
choice for ag is ap = t/d sin®> ¥ = /7 2dp>. Using the simplification as it is done
in the case of GOE we get step no. 3 in Eq. (3.23). Now cos(y/| + ) is cos 21 for
x ~yandcos(Y; —yn)is 1 — (8¢)2/2. Therefore,

cos2y =1 —2sin’ ¢ = 1 — 27 25>

_(5‘/’)221_[ r T (3.25)

1
2 2dn 5>

Equation (3.25) will give the fourth equality in Eq. (3.23). Then

1 1_/2 42—2/ 1_/2 42—2/
S20r) = Sgus + ﬁ{Zln( ’7& i ,)7; P o ’7)2+ e
T — _
n (1= + 5
2
= 2yt s 1n|:1 + o } (3.26)
2 4m2d?pt(1 —n')?
At this stage it is convenient to introduce the transition parameter
Alw) = o’dp? (3.27)
] a§] exp —20?
n = exp(—Zoz2 — ;> ~1 (3.28)
dn2p? ’
272 A
S o1~ 224 r_z _ T+ n_z(oz)
dn?p dmn?p
Using Eq. (3.28) in Eq. (3.26) we obtain
2 1 nzrz
22 AL 22 — |l 3.29
(r:4) GuEM) 5 I I e A (3-29)
and the small A expansion is,
1 wr? 2A(a)
2000 Ay — 32
2(r:A)=Xgup(r) + 702 ln<1 + 1.2 ) — s (3.30)
i+ 55
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Also note that X2(r : A) — Z‘éUE (r) for A — oo. The parameter t is fixed from
GOE-GUE difference for r = 1; A 524y = 0.446 —0.344 = 0.102 and this gives T =
0.615. Equation (3.29) was reported first in [1, 8] and later Dupuis and Montambaux
[20] derived the same formula in the study of statistical behavior of the spectrum for
a metallic ring pierced by a magnetic field. Here the parameter t has a clear physical
meaning. Finally we mention that an exact solution for GOE to GUE transition for
N x N matrices was given by Pandey and Mehta [21].

The Aj statistic for GOE to GUE transition follows by combining Egs. (3.29)
and (C.8),

A3, o) = A5 U7 +

n
2_4/ (7° — 2a°r + ) In[1 + B(A)r?*]dr.  (3.31)
men 0

Here we have used Eq. (3.29) with the substitution B(A) = 71’2/4[1' + 272 A(0)]>.
Solving the integral in Eq. (3.31) using MATHEMATICA gives,

_ — 1 27
Ay A) = Ay (7)) + —— [ﬁ tan~! (77y/B(A))

BX(A)a* — 1 — 4B(A)n? . »
[ VEN In(1+ B(A)n )} -7
(1+ B, , 3
W(w (A) —2B (Mn —3)]. (3.32)

3.1.3 Application to TRNI in Nucleon-Nucleon Interaction

Following the fact that GOE generates stronger level repulsion compared to GOE,
as seen from 2 x 2 P(S)d S, Wigner [22] suggested that this could be used to detect
time reversal breaking in nuclear force. This and the close agreement between neu-
tron resonance data (i.e. NDE) and GOE coupled with the GOE to GUE transition
theory, i.e. the transition curve defined by Eq. (3.29) for » = 1, allows us to derive a
bound on time reversal non invariant (TRNI) part of the nucleon nucleon interaction.
Firstly the NDE data with 1336 levels gives >2(1) value to be 0.445 and the GOE
value is 0.446. Adding the sample size error on the theory value, within 3o (99.7 %
confidence), the upper bound on 72 A is 0.145 [1]. As A = a?v?/D?, the bound on
av is av 2~ 0.1D. Note that v is r.m.s. many particle nuclear matrix element for the
TRI part of H. To convert this to a bound on «, i.e. TRNI in the effective nucleon-
nucleon interaction, v has been determined using statistical spectroscopy methods
(see Chap. 7). The deduced bound is o < 1073 [23]. Recently, Morrison et al. [24]
suggested that a similar analysis for 7-odd, P-even interactions in atoms should be
possible.
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3.2 Poisson to GOE and GUE Transitions

3.2.1 2 x 2 Matrix Results for Poisson to GOE Transition

Substituting &’ = 0 in Eq. (3.6) and applying Eq. (3.7) will give the NNSD for
Poisson (P) to GOE transition. To this end we use the result

lim [v27 (2va’)] " exp[—2%/8(va’)*] = (1/2)5,.0

o’—0
and the factor 1/2 comes as we have z > 0. Then, in terms of the transition parameter

a’v?

A= — (3.33)
2 9
D 0
where the mean spacing Dy of the unperturbed Poisson spectrum is Dop = 2pv and
the mean square admixing GOE matrix element is a?v?, the NNSD for P to GOE
transition, with S = §/ Dy, is [9, 12],

Pp (S)dﬁ—dégex{ S'Z/SA}/ooex A 2 I 18 dhr. (3.34)
-GOE =dS ~ p A p aa 1\ 1a . (3.

For A =0, Eq. (3.34) gives Poisson and for A — oo the Wigner (GOE) form. Using
Eq. (3.9) with a®> = 1/8A, u =2 and b = A /4 A (for the integral over S), it is easily
proved that Pp_GOE(S' ) is normalized to unity.

Although we can compare Pp_gog(S) with P(S) for various A values, it is more
instructive to examine the A — 0 and S small limit. As A — 0, we can approximate
exp—(A + 12/8A) by exp —12/8A. Now applying Eq. (3.9) and the results given
in p. 509 of [15], i.e. 1Fl(%, 1,z) = [expz/211o(z/2), will give

P s§? §?
Pp. $)dS=dS. /- — I . 3.35
P-GOE () S A2 CXP{ 16A} 0<I6A> (3.35)

Let us mention that perturbation theory also gives Eq. (3.35) for a general N x N
matrix [25]. One important result that follows from Eq. (3.35) is that P(S) goes to
zero as S goes to zero for non-zero values of A (i.e. there is level repulsion as soon
as GOE is switched on).

In the data analysis and applications, more useful is the variance of the NNSD,

02(0: A) = (E/Ez) — 1 for P to GOE transition, which defines a transition curve.
Using Eq. (3.9) with a> =1/8A, u =3 and b = A/4A for the integral over S and
then applying Eq. (7.628) on p. 871 in [16] will give S = ﬁW(—%, 0,2A) where

¥ is Kummer’s function [15]. As A2 =2 for Poisson, Eq. (3.2) gives $2 = 8a2? +
8p?v2. Then, with Dy = 2pv,

3 8A+2
T r[w(—1/2,0,20)]

2 ?
op.gog(0:4) = >

[E] D(2) (3.36)
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Fig. 3.1 Variance o%(0) of T’a‘“s"iﬂ‘ curves
NNSD vs transition
parameter A for Poisson to | 7
GOE and GUE transitions. 08 \ i
Figure is constructed using !
the results given in [12]. See N Poisson —> GOE b
Sect. 3.2 for details \
0.6 -, -
\
S [\ i
© 04 N Poisson —> GUE
\
| - \\ - -
02} I ‘****‘*7—‘—l»—:
- GUE/ GOE/ .
0 ! ! ! !
0 0.2 0.4 0.6 0.8 1
A

The complete transition curve, i.e. plot of 62(0: A) vs A is given in Fig. 3.1. It is
instructive to consider small A expansion of o2(0: A). To this end we start with the
identity ¥ (—1/2,0,2A) = (2A)¥ (1/2,2,2A) and carry out small A expansion for
v (1/2,2,2A). Using Eq. (13.1.6) on p. 504 of [15] we have,

v(1/2,2,z)
1 1 1
14+ 0@} —“J=v) -y 0] .
~ il )[{ +0() nz+{1/f<2> (D) = )}+ (z)]+F(%)Z
1 _zlnz_g l _ _ 2
_ﬁz{l 5 2[w<2> v(l) 1//(2)“+0(z )- (3.37)

Here we used I” —%) = —2,/7 and F(%) = /7. With z =2A, ¢(%) =—y —
2In2, ¥ (1) = —y and ¥ (2) = —y + 1 in Eq. (3.37), Sis

S=2JTAW(1/2,2,2A4) =1 — AInQA) + Al2In2 + 1 — ]+ 0(42). (3.38)

Therefore the small A expansion for a2(0: A) is

op6os(0: A) 25 1444{In24) + 14y - 21n2)} (3.39)

where y is Euler’s constant. Note the Aln A term also appears in the small A ex-
pansion for the number variance 22(1); see Eq. (3.51) ahead.
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3.2.2 2 x 2 Results for Poisson to GUE Transition

Let us now consider the Poisson to GUE transition. Simplifying Eq. (3.4) after
putting o = o’ will give,

S%ds S% 4+ 4p?v)2
P($)dS = exp—> PV
\/27'[(20(1))3 8a“v
T . pvSAcosf
X A d@sm@expW (3.40)

Now carrying the 6 integration and applying Eq. (3.7), we obtain the NNSD for P
to GUE and the final result is, with A defined in Eq. (3.33),

A

A oA N S ~
PpGuE(S)dS =dS————— exp{—5?/84
oAt /84

© A2 . (S
X A7 expy —A — — ¢ sinh| — |dA. (3.41)
0 8A 4A

It should be noted that the mean squared GUE admixing matrix element is 2?v?
and hence in this case the transition parameter A, used in Eq. (3.41), is mean squared
admixing GUE matrix element divided by two times the square of the mean spacing
of the Poisson spectrum. Using the integrals given in p. 365 of [16], it is easy to
prove that Pp.Gue(S) is normalized to unity. Similarly, using Eq. (3.10) we have,

= 1
S :4A/ —[exp—v8A y]P(y)dy
oy

+ [ /87" +[exp2A](1 — @(ﬂ))]. (3.42)

Carrying out further simplifications using MATHEMATICA (the functions used
here are ExplntegralEi(—), HypergeometricU(-) and HypergeometricPFQ[{a, b},
{c,d}, z]), the final result is

= . 1/2,1
S=X(A)=2A |:—Ez(2A)~|—4~/2A/7r2F2 (3/é, 32" 2A>i|
+/8A/m + [exp2A][1 — qb(/ﬂ)]. (3.43)

Then, the exact expression for o2(0: A) is

12442

opGue(0: A) = XAP 1.

(3.44)
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In Eq. (3.43) Ei is exponential integral (see p. 228 in [15]),

n

o0
X
Ei(x) = 1 E .
ix)=y+ nx+n_1n(n!)

Similarly 5 F> is generalized hyper-geometric function,

:l _—
Y et naad+n 2

)

<a,b ) ab  a(a+ Dbb+1) x2
21k e d X et St

’

The complete Poisson to GUE transition curve for 2(0: A) vs A, from Eq. (3.44)
is given in the Fig. 3.1. Once again it is instructive to consider the small A expansion
for GS_GUE(O : A). Note that,

X(4) = 2A[{—y —In(24) + 0(4)} +4,/27A + 0(A3/2)]

8A 2
41424+ 0(AN)]|1- ==V24 0A3/2}
w204 o)1= VIR + 0(4)
=142A[1 —y —In2—1n A] + 0(A%?). (3.45)
Now Eq. (3.44) gives,

1
o aup0: M) 28 1484 <ln(A) +5+y+in 2). (3.46)

Just as in the case of Poisson to GOE, here also there is the Aln A term. The ap-
proximation in Eq. (3.46) is good for A < 0.05.

3.2.3 Relationship Between A Parameter for Poisson to GOE and
the Berry-Robnik Chaos Parameter

There are several different formulas, given by Brody [26], Berry and Robnik [27,
28], Izrailev [29, 30], Blocki [31] and many others for the NNSD Pp_gog(S) d S and
Pp.gue(S)dS. For example, the well known Brody (Br) distribution for Poisson to
GOE transition, with the Brody parameter w is [26]

B w w+1 (l)+2 o+l
Ppgop(8)dS =aS”exp{—bS“"'}; a=(w+ Db, b={T

w+1
(3.47)
and it reduces to Poisson for @ = 0 and Wigner (GOE) form for w = 1. For
0 < w < 1, the distribution given by Eq. (3.47) vanishes as S — 0 but has an infinite
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derivative at that point, an unrealistic feature. Recently a physical process that gen-
erates the Brody distribution has been identified [32] and here the Brody parameter
corresponds to an appropriate fractal dimension.

The one parameter (p) Berry-Robnik (BR) formulas for Poisson to GOE and
GUE are,

PERoE(S)dS = (1 — p)?exp{—(1 — p)S} erfe(VTpS/2)
+ (201 = p)p+mp*S/2) exp{—(1 — p)S — mp?S?/4},

2
PESUE(S)dS = (20(1— p) — (1 — p)? p ) exp{—(1 — ,o)S}erfC(—ﬁ ,0S>
+ (—%p“Sz o persa— p)2>
n 7r

x ex {_ — s — g 2}
p{—(l=p)S——p’S
(3.48)
where p is fractional volume, in phase space, of the chaotic region and 1 — p is frac-
tional volume of all regular regions put together. The BR forms are good when there
is only one dominant chaotic region coexisting with regular regions. Note that p =0
gives Poisson and p = 1 Wigner (GOE or GUE). Modification of BR distribution
(flooding- and tunneling-improved BR) has been discussed recently in [33]. Now
we will consider the relationship between the 2 x 2 results and the BR distribution
given by Eq. (3.48) in order to give a physical meaning to the A parameter.
The transition curves given in Fig. 3.1 show that the Poisson to GOE and Poisson
to GUE transitions are nearly complete for A ~ A, = 0.3. The results in Eqs. (3.36)
and (3.44) are in fact applicable to general N x N matrices (or for any interacting
many particle system) through the transition parameter A by giving appropriate in-
terpretations to a?v? and Dy in the expression for A; this is indeed verified by the
results in Fig. 4 of [10]. With this, the results in Egs. (3.36) and (3.44) can be applied
to realistic systems. An important question is: what is the significance of the numer-
ical value 0.3 of A, for Poisson to GOE (similarly for Poisson to GUE)? Toward
this end, in [12] relationship between A and the BR parameter p (p representing
fractional volume, in phase space, of the chaotic region of a complex dynamical
system) for P-GOE transition was explored. Equation (30) of [27] gives a2(0: p)
for the BR P(S)dS as a function of the p parameter (p changing from O to 1),

P-GOE:BR (0 ,()) =—1—¢e p —1 (e —1 (3 49)
O, . : X . B
) ' 1 - ,0 JZ,OZ ﬁp

Say Apr = p/(1 — p) so that Agr changes from O to co just as A. Fitting Eq. (3.49)
to the curves in the Fig. 3.1, it is seen that [12],

ABR o

A~ =
20 20(1—p)

for A > 0.05. (3.50)
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However for A < 0.01 results of Eq. (3.36) and the corresponding BR formula differ
significantly. Equation (3.50) gives p = 0.85 for A = 0.3. Thus 85 % chaoticity can
be used as a guide for deciding the marker for order (Poisson) to chaos (GOE)
transition. For example, using sufficient number of energy levels near ground states
or near the yrast line at high spins as the case may be in atomic nuclei (similarly in
other interacting many particle systems such as atoms, molecules etc.), it is possible
to deduce the corresponding o%(0) values. Then from Fig. 3.1 one can read-off the
value of A (or, depending on the sample size errors, determine a bound on A) for
Poisson to GOE transitions in these systems. Converting this to p gives information
about the amount of chaoticity in the system. If it is 85 % (i.e. A > 0.3), then one
can argue that chaos has set in. This approach was used in deriving the order-chaos
border in interacting fermion [34] and boson systems [35].

3.2.4 Poisson to GOE, GUE Transitions: N x N Ensemble Results
for X2(r)

Without going in details here we give the formulas, valid for N x N matrices, for
>2(7, A) for Poisson to GOE and GUE transitions. They, valid for 77 >> A!/?, are
(1]
AL _ n?
ZPGOE(n A)—n —2A<lnﬂ +y -1 +ln4>
(3.51)

—2
22 g A) S —4A<1nﬂ —l—y)

More general discussion of Poisson to GUE (and GOE) transitions for N x N ma-
trices is given in [3, 5-7].

3.2.5 Onset of Chaos at High Spins via Poisson to GOE Transition

Stephens et al. [36, 37] developed a novel technique to measure the chaoticity pa-
rameter (A'/?) for order-chaos transition in rotational nuclei. With D giving the
average spacing of the levels that are mixed and v giving the r.m.s. admixing matrix
element, A'/2 = v/D. Extending Wigner’s 2 x 2 matrix formalism, the variance
of the NNSD for Poisson to GOE transition is given by Egs. (3.36) and (3.39). As
discussed before, the Poisson to GOE transition is nearly complete for A ~ 0.3. and
A~ m where p represents fractional volume, in phase space, of the chaotic
region of a complex dynamical system. From the experiments for Yb isotopes,
Stephens et al. deduced that A!'/2 ~0.15 to 1.5. Thus at present it is not possible to
make a definite statement about onset of chaoticity in the Yb isotopes.
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3.3 2 x 2 Partitioned GOE

Let us consider the H matrix H = Hy + aV where Hj is a 2 x 2 block matrix
with dimension d = d; + d; (d; is dimension of the upper block and dy of the
lower block) and V is a d dimensional GOE(v?). Note that GOE(v?) stands for
GOE random matrix ensemble with diagonal matrix elements of the matrices in
the ensemble being G (0, 2v%) and off-diagonal matrix elements G (0, v?). We put
the off-diagonal blocks of Hy to zero and represent the upper block {Hp.11} with
dimension d; by a GOE(U%) where v% = v2(d| + d»)/d, and similarly the lower
block {Ho,2>} with dimension d> by a GOE(v3) with v3 = v?(d; + d»)/d>. Thus,
o = 0 corresponds to a superposition of two GOE’s and @ — oo gives a single GOE.
For this 2 x 2 partitioned GOE, binary correlation approximation gives A; = 2(1 +
[1+ a2]—§) ~212 — g“az) Recall that for GOE to GUE transition we have A; =

1+ ( T2 )5 ~2(1 — za?). Therefore it is easy to modify the GOE-GUE derivation

and derive the following result, with the transition parameter A = a?v?/ D for the
number variance [1],

52 Ay = 520n o)+ =1l 1+ i (3.52)
r, A) = r, — — 1. .
22 w2 4t +m2A)?

The cut-off parameter t is determined using the result
230(0) = Zdog (d1/d)r) + Zog (d2/d1r)

and Eq. (3.52) is good for r > 2. Note that Ez(r,_oo) is the GOE value. As discussed
before, £2(r) formula gives the expression for Az(r),

Azas2(r, A) = As(r, 00) + LI 2 ! In(1 + X?r?)
. r, = . —3{|-———=— ——|In r
3:2x2 3V 72|12 X%2  2Xx44

(3.53)

+—4t (X)+ : 2
an~ —-=1
YTox? T g

T2 ratA)
A direct and good test of Eq. (3.53) came recently from experiments with two cou-
pled flat superconducting microwave billiards [38].

3.3.1 Isospin Breaking in *Al and 3P Nuclear Levels

Shriner and Mitchell [39, 40] considered complete spectroscopy for levels up to
~8 MeV excitation in 2°Al and °P. For 2°Al, there are 75 T =0 and 25 T = 1
levels with J™ = 1% to 5%. Similarly in 3* P there are 69 7 =0 and 33 T = 1 levels
with J™ = 0% to 5%. With Coulomb interaction breaking isospin, the appropriate
random matrix model here is 2 x 2 GOE giving 2GOE to 1GOE transition. Analysis
of data for 2°Al and 3P is in good agreement with 2GOE to 1GOE transition. In
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particular, using 20 Al the data was analyzed using a slightly different 2 x 2 random
matrix ensemble [41],

2 (202
|:GOE((/d@)U ) aVe(2v7) } (3.54)

aV.(2v2) GOE((d/d)v?)

in |T =0) and |T = 1) basis with the dimension dy of the T = 0 space being dy = 75
and the dimension d; of the T = 1 space being d; = 25. Then the total dimension
d = 100. Analysis of data gave o« = 0.056 and Hl%. (c) = angij ~ (20 keV)2. The

corresponding spreading width I" = 2z Hl% (¢)/D is I ~ 32 keV. There is also an
analysis of reduced transition probabilities (with about 1500 transitions) in 2°Al
showing deviations from P-T [42]. Let us consider this in some detail.

For GOE, given the strengths R(E;, E¢) = [(E; |ﬁ|Ef)|2, the locally renormal-
ized transition strengths x = R(E;, E¢)/R(E;, E ) are distributed according to the
Porter-Thomas (P-T) law. Deviations from P-T law could be ascribed to symmetry
breaking and then the questions are: (i) where to look for good data; (ii) what is the
appropriate random matrix ensemble and what are its predictions. Adams et al. [42]
collected data for reduced electromagnetic transition matrix elements in 26Al from
ground state to 8 MeV excitation. The data divides into 120 different transition se-
quences with each of them having about 10 matrix elements; a transition sequence is
defined by initial Ji”i T; going to all J}Tf ' Ty (with no missing transitions in between)
for a given B% (E or M) where L is multipole rank and 7" = O for isoscalar (IS) and
T =1 for isovector (IV) transitions. In the data set there are 211 E1 1S, 172 E1 1V,
358 M1 1V and 132 E2 IS transition matrix elements. Instead of the locally renor-
malized strengths x, distribution of z =log(x) is plotted by combining all the data
with a proper prescription. The P-T form gives maximum at z = 0 while data shows
the peak at ~—0.5. It is conjectured that this deviation is a consequence of isospin
breaking. The random matrix model now consists of the 2 x 2 partitioned GOE for
the Hamiltonian as given by Eq. (3.54) and in the same basis an independent 2 x 2
partitioned GOE for the transition operator & [43],

0 o,
0 = Pis [ﬁ(()o) ﬁ(()l)] + Brv [a 0 } . (3.55)

Here, Bis = 1 and Brv = 0 for IS and Bis = 0 and By = 1 for IV transitions. De-
termining appropriately the scale parameters of the various GOE’s in the H and &
ensembles, Barbosa et al. [43] recently constructed P(z)dz via numerical calcu-
lations by transforming the ensemble in Eq. (3.55) into {H} basis via the unitary
matrices that diagonalize H’s. The random matrix model correctly predicts the shift
in the peak with respect to P-T. However the data are more strongly peaked and at
present there is no quantitative understanding of this feature.
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3.4 Rosenzweig-Porter Model: Analysis of Atomic Levels and
Nuclear 2% and 47 Levels

Rosenzweig-Porter model [44] is the appropriate random matrix model when we
consider a set of levels in a spectrum .# and the levels in . differ containing con-
served quantum numbers which are either unknown or ignored. Then, the spec-
trum can be broken into r sub-spectra .%; of independent sequences of levels with
j=1,2,...,r.In the set of levels considered for the analysis of P(S) (i.e. NNSD),
say the fraction of levels from .7} is f;. Then, 0 < f; <1and };_, f; = 1. Now
an appropriate random matrix model is to represent each subspace .#; by indepen-
dent GOE’s of dimension d; = df; where d is the size of .. NNSD for such an
ensemble was first considered by Rosenzweig-Porter (RP) [44] and they showed
that, with f; =1/r;r — 00, P(S) goes to Poisson. This model has been employed
in discussing LS to JJ coupling change in atomic spectra. Exact solutions for the
RP model are given very recently [45, 46] but they are not useful in data analysis.
Abul-Magd derived a simplified formula for P(S) in terms of the chaoticity param-
eter f =3, f/2 and it is [47],

P(S)dS=[1—f+ Q(f)nS/2] exp[—(1 — /)S — Q(f)nS*/4]  (3.56)

where Q(f) = f(0.7+0.3f). With f =1/r, r - 0o, P(S) goes to Poisson and
f =1 gives GOE. Abul-Magd, Harney, Simbel and Weidenmiiller [48, 49] analyzed
the NNSD of low-lying 27 levels (up to ~4 MeV excitation) for Poisson to GOE
transition using Eq. (3.56). They considered 1306 levels belonging to 169 nuclei
(with a minimum of 5 consecutive 27 levels in a given nucleus). The nuclei are
grouped into classes defined by the collectivity parameter E(4T) / E(2T). In the
system considered, departures from GOE arise due to the neglect of possibly good
quantum numbers. Using Bayesian inference method, values of f are deduced and
it is found to be small for nuclei with IBM symmetries while for the intermediate
nuclei f ~ 0.6.

Equation (3.56) was also applied in the analysis NNSD for 2% levels of prolate
and oblate deformed nuclei by Al-Sayed and Abul-Magd [50]. They considered 30
nuclei of oblate deformation having 246 levels and 83 nuclides of prolate defor-
mation having 590 energy levels ranging from 28Si to 228Ra. Analysis showed that
the chaoticity parameter f is ~0.73 for prolate nuclei and ~0.59 for oblate nuclei
suggesting that oblate nuclei are more regular compared to prolate nuclei.

It may be useful to note that a formula for the number variance X2(r) for the
RP model was given in [1] and this is not yet used in any data analysis. All the
nuclear data that is analyzed so far using RMT is shown in Fig. 3.2 in the angular
momentum and energy plane.
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Fig' 3.2 Schematic diagram Random Matrices in Nuclei:
. . . Evidence from Experimental Data
giving the regions, in the 15 :
excitation energy vs angular s
momentum plane for nuclei, (Yb isogl")gs at
where data was analyzed for SM-B high spins)
evidence for random matrices < (T=0,T=1 levels
(GOE and its extensions). 2 10 in AL 7P) GRFJ-E
Details of BHP [51], SM-B - (heavy deformed nuclei)
[39, 40, 43], AHSW-AA g
[48-50], GRFJ-E [52, 53], o (noutly
and SDLM [36, 37] are given 2 neutron
in the text (Color figure % 5 resonances) I
1 >
online) w Yrast line
AHSW-AA (2" levels)
00 10 20 30 40

Angular momentum ( -h)

3.5 Covariance Random Matrix Ensemble X X : Eigenvalue
Density

Let us consider a N x M matrix X with matrix elements real and chosen to be inde-
pendent G (0, v2) variables. Then the N x N random matrix ensemble C = X X7,
where X7 is the transpose of X, represents a GOE related covariance random ma-
trix ensemble (GOE-CRME). It is possible to consider many other types of CRME’s
as discussed for example in [54-56]. The CRME’s have wide ranging applications.
For example: (i) they are important in multivariate statistical analysis [57]; (ii) they
are used in the study of cross-correlations in financial data [5S8—60]; (iii) they appear
in a model for mixing between distant configurations in nuclear shell model [61];
(iv) they are relevant for statistical analysis of correlations in atmospheric data [62];
(v) they determine statistical bounds on entanglement in bipartite quantum systems
due to quantum chaos [63].

In this section we consider the ensemble averaged density pC (E) of the eigen-
values of GOE-CRME C = XX Dyson [64, 65] first derived the result for pC(E)
for the matrices X with N = M. In most applications the eigenvalue density for
N # M is needed. The result for this situation was derived using many different
techniques; see [54, 55, 57, 66] and references therein. Equation (3.73) ahead gives
the final result. It is indeed possible to obtain p© (E) using the 2 x 2 partitioned GOE
(p-GOE:2) employed in nuclear structure studies as a statistical model for mixing
between distant nuclear shell model configurations [61, 67]. This gives an easy to
understand derivations of the final result [68].
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3.5.1 A Simple 2 x 2 Partitioned GOE: p-GOE:2(A)

Let us consider two spaces #1 and #2 with dimensions d; and d, respectively . For
a simple statistical model for the mixing between the spaces #1 and #2, one can
assume, as a first step, that all the eigenvalues in #1 are degenerate and say their
value is 0. Similarly one may assume that the eigenvalues in #2 are also degenerate
with their value say A. More importantly, these two spaces will mix and the mixing
Hamiltonian X will be a d; x d> matrix. A plausible model for X is to replace it by a
GOE, i.e. assume that the matrix elements of X are independent G (0, v2) variables.
Then we have a 2 x 2 block structured random matrix ensemble,

_{on X
Hp= |:XT A 12:| . (3.57)

This ensemble is called p-GOE:2(A). Note that the matrices /; and I are unit
matrices with dimensions d; and d» respectively and the H matrix dimension is
d = dy + d>. Now let us consider the eigenvalue density p(E) for the matrix H 4.
The p2(E) is simply,

pA(E) = (8(Ha — E))' 17,

(3.58)
and its decomposition into sum of the partial densities p2:! and p2:2 defined over
the spaces #1 and #2 respectively is given by,

pAEY=(8(Ha—E));  pA(E) =d ™ [dip™ (E) + d2p™(E)]. (3.59)

As we will see ahead, the densities ,oA;l(E) and ,oA?Z(E) differ only in a delta
function. Therefore from now on we will consider only ,oA;1 (E) and also assume
that d; < d». For mathematical simplicity, as an intermediate step, we will consider
the matrix ensemble H4 4/,

—4h X } (3.60)

Hin = [ xT AL

and the corresponding oA (E). Denoting the p-th moment of this density by

Mx"!, we have, with [ 2] being the integer part of £,
G
LA _ 2 p=2v Ty
M,, _(_DPZ( : )(A’) ((xx7)")". G3.61)
v=0

Equation (3.61) is derived by multiplying Hi s p-times and then using the
first diagonal block of the resulting 2 x 2 block matrix. Similarly szzA 2 =
(di /)M and M35 = —(di/d) M35 with Mg = Mgt =1
Equation (3.61) shows that there should be a generalized convolution form for
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piA/;l(E) with one of the factors being ,oA,:O;l as the moments for a den-
sity written as a convolution of two functions follow the law M,(pa ® pp) =
Z(’;)Mx (A)M,_5(B); here ® denotes convolution. From Eq. (3.61) we have
Miﬁ/il = -4 MiA !. Then ffooo EY(E 4+ A)p*A Y (E)dE = 0 and also
[ EP(E-A )piA ‘1(—E)dE =0. They imply that pT431(E) is of the form
|E+A,|1/2 f(E) where f(E) is an even function of E. This and the fact that

(XXTy"y! is the 2v-th moment of p%!(E), allow us to identify the following
important result,

E—A

—E+A, A=UN(E2 = (a)). |EIz A (3.62)

Now, putting A" = % and shifting all the eigenvalues E by A /2 so that E — (E —
%), the final result for ,OA?1 is obtained,

1
. E—A|2 ,_,.
pA’l(E)z‘T‘ p="N(JE(E - 2)), E=>A, E<O0. (3.63)

Equation (3.63) was reported first in [61]. Now we will consider pA=%1(E) for
p-GOE:2(A = 0).

3.5.2 Moments and the Eigenvalue Density for p-GOE:2(A =0)

Given Hy = [01 1 X ], mathematical induction gives,

xT on
[ (xxTy 0 2v+41 0 (XxTyvx
(HO) = [ 0 (XTX)U] ’ (H ) |:(XTX)VXT 0 .

(3.64)
Then, immediately we have ((Ho)?))! = ((Hp)P)? for p # 0 and for p =0, they
are di and d; respectively. Secondly, all the odd moments of p2=01(E) are zero.
Also, for di < dp, p2=C2(E) = L p2=C1(E) + (1 — ‘)S(E). One way of con-
structing p2=C%1(E) is via its moments. From Eq. (3.64) we have M, (p2=%1) =
(XXTy")! and they can be evaluated for p-GOE:2 using BCA discussed earlier.
Firstly, the ensemble averaged second moment simply is,

Ma(p*=01) = @)™ Y Xy (XT) = @)~ 1ZX d. (365

ij

Similarly, defining M, = d; M, = (((Ho)"))", we have

Ma(p?=01) = Z Xij(XT)ijkl(XT)li = Z Xij X1j XXl
ikl ikl
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In the sum here, applying BCA, we need to consider only terms that contain pairwise
correlations. Then, with k =i orl = j,

1\714(,0A:0;1) = Z[XininuXu] + Z[Xinijijij]

ijl ijk
= Z[Xinij XXl + Z[Xinij Xij Xijl
ijil i gk
=v'[did] + didy). (3.66)

The two terms in Eq. (3.66) can be written as (XX7 XXT) and (XXT XXT). The
L1 L1

terms that are dropped in Eq. (3.66) involve cross correlations, i.e. terms with odd
number of matrix elements in between those that are correlated. They will be smaller
by a factor of dy (or dp). Thus BCA here is good if d; and d; both are large. Pro-
ceeding further we have for M(»

Mo (p=%") = Z Xij Xk X1 Xmi Xmn Xin

i,j.k,l,m,n

Z Xij Xij XX XinXin + Z Xij Xij Xi1 X1 Xomi Xin

i,j.l.,n i,j,l.m

+ Z XijXijXujXijXinXin + Z XijXij Xuj XmjXmjXij
i,j.k.n i,j.k.m

+ Z Xij Xij Xt Xt Xij Xij
ivjk,l

vo(did; +3did; + didy). (3.67)

The binary correlation structure in Eq. (3.67) is clear and let us apply it to Mg.
Writing X;; as X, symbolically 1\78 =) XaXpXcXaXcXXgXp. Now: (i) with
X, and X, correlated, the correlations in the remaining XXy XX y X X, are same
as those in 1\76; (i1) with X, and X4 correlated, necessarily X; and X, must be
correlated and the remaining X, X r X, X}, correlations are same as those in M4;
(iii) with X, and X r correlated, necessarily X, and X, must be correlated and the
remaining X, X.XyX, correlations are same as those in A7I4; (iv) with X, and X},
correlated, the correlations in the remaining X, X XqX.X r X, are same as those
in 1\7[6. Then the expression for Ms is,

Mg (p?=ON) = v¥[atd> + 6d7d3 + 6d7d5 + did3). (3.68)
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Continuing this will lead to a recursion formula for the moments,

Moy (p2=) =2 3" Moo (p?=0N) M, (p2=02); v,
- - r=0,2,...,2v-2 N
M>, (,oAzO;l) = M, (,oAZO;Z) for v #£0, M (,OA:O;I) =d, (3.69)

Fo(p2=0%) = dy.

For example using Eq. (3.69) we have My = vlo[dfdg + 10(1?6122 + 205113615J +
10d3d3 + d1d3]. With all the moments determined, it is possible to identify the

density p2=%1 Integral tables in [69], the expression for My given by (3.66) and
M>,, v=1,2,3,4 for d| = d, allow us to write the final solution,

LR - EE - R
2mvid, |E|

Ry =v(\/dy £ /dy). (3.70)

Note that p2=%!(E) =0 for |E| < R_ or |E| > R and also it is a semicircle for
di = d>. The reduced moments M», = M», /(M>)" of p2=%1(E) are,

2v+42 1
i p201) = ST [y - )

7 Ry Ro

pAzO;l(E)dE: dE, R—§|E|§R+v

di —-— 1—+/Ro

Ry=—, Rp=———.
dy 1+ +/Ro

(3.71)

3.5.3 Eigenvalue Density for GOE-CRME

Our primary interest is to determine the eigenvalue density p€ (E) for the GOE-
CRME C = XX7 where X is a dy X dp matrix with its matrix elements being in-
dependent G (0, v?2) variables; we assume d; < d». From Eq. (3.64) it is seen easily
that the v-th moment of p€ and the 2v-th moment of p2=%! are simply related,
M, (p€) = Moy (p2=%1). As p2=%1 i5 an even function, we have

e © e 00 pA=0:1(y1/2)
Mo, (p _’):2/0 E”p _,(E)dE:/o YU[T]CU

pA=0; 1 (yl/Z)

C
= p M=
Y172

(3.72)

Now, the formula for p€ follows simply from Eq. (3.70),

I Vo -no-1)

C
A do =
P 2m02d, Y

Ao <A<y



60 3 Interpolating and Other Extended Classical Ensembles
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With the normalization v2d2 =1, we have

1 VOor =)0 — A
oS (M) dr = VO = 2 ) 4 Al <A<y
27 Ro A
d
Ax =[14+ Ro£2V/Ro], Ro= d—l, dy < ds. (3.74)
2

The final solution given by Eq. (3.74) is same as the result reported for example
in [59] with Q = 1/R¢ and 02 =1. Thus, pC(E) follows from p-GOE:2(A) and it
is simple to deal with this ensemble. Figure 3.3 gives a plot of p¢ (1) for various
values of Rg and used here is Eq. (3.74). Before going further, some comments on
generalization of p-GOE will be useful.

Given p(x), its Stieltjes transform f(z) is

+oo
f@)= / PR 4y (3.75)
oo T—X

where z is a complex variable. Since —7é(x) = J(Hlo) we have

p(x):—ls{[gn%f(xﬂs)]}. (3.76)

T

Given a general 2 x 2 block matrix [lel Z;z] that is real symmetric with dimen-
12

sions for the diagonal blocks being d; and d> respectively, following Egs. (3.58)
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and (3.59), we have dp(x) = 2,2: 1 d,-pi (x). Let us denote the Stieltjes transforms
of p, p' and p® by f, fi and f> respectively. We assume that the matrix elements
of H;; are independent Gaussian variables with variances ”12 Moreover, we can
assume that all matrix elements are zero centered except that the diagonal matrix el-
ements of Hyy have centroid A. Then, using the moments recursion, one can prove
that [4]

1

i v%ldlfl - U%defZ
1

i—A—vhdy fr —vhdi fi|

Solving these equations for f; with vi; = vy =0 and A = 0 and applying
Eq. (3.76) will give pA=01 (). This will be an alternative derivation of Eq. (3.70)
given earlier. However, Eq. (3.77) allows one to solve the most general 2 x 2 block
matrix problem with vy # 0, vy # 0 and A # 0, i.e. most general p-GOE:2 ran-
dom matrix problem. Deriving an analytical form for p! (similarly for p?) for the
general p-GOE:2 is of considerable interest in nuclear physics [67]. Its further gen-
eralization to p-GOE:N was analyzed in [70] and the partial densities p’ are reduced
to multiple integrals involving commuting and anticommuting variables.

dfi =
(3.77)
dfy =

3.6 Further Extensions and Applications of RMT

Here below will give a list of various extensions and applications of RMT. This list
is only partial as the subject of “Random Matrices: Theory and Applications” is too
vast to be covered in completeness at one place.

1. There are many new class of random matrix ensembles that are not covered
in this book and some of them are: (i) § ensembles and more general random
matrix ensembles related to orthogonal polynomials [71, 72]; (ii) critical ran-
dom matrix ensembles [73, 74]; (iii) ensembles with non-extensive g entropy
[75-77]; (iv) ensemble with super statistics [78]; (v) special constrained Gaus-
sian ensembles [79]; (vi) Cyclic random matrix ensembles [80]; (vii) Hussein
and Pato’s deformed ensembles based on maximum entropy principle [81-84];
(viii) Transition ensemble for harmonic oscillators to GUE transition [85];
(ix) New versions and new applications of circular ensembles [86-90]. (x) Non-
Hermitian random matrix ensembles; see [91-98] and references therein. (x)
Random density matrices for entanglement related studies [99, 100].

2. There is a nice relationship between ensembles of 2 x 2 Hermitian matrices
and Gaussian point process [101] and similarly between Poisson point pro-
cess and 2 x 2 complex non-Hermitian random matrices [102]. Construction
and applications of many other 2 x 2 random matrix ensembles are discussed
in [76, 103, 104]. For example, introduced in [103] are 2 x 2 pseudo-Hermitian
random matrix ensembles and in [76] introduced are ensembles based on Tsal-
lis entropy. Thus, 2 x 2 ensembles have much wider relevance. As an additional
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10.

11.

12.
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example, briefly discussed in Appendix E are 2 x 2 matrix results and their
extensions for open quantum systems [105-112].

. Going beyond 2 x 2 ensembles, recently 3 x 3 random matrix ensembles (first

discussion on 3 x 3 random matrix ensembles was given in [113]) are found
to be useful in deriving some new results. Using 3 x 3 GE, derived in [114]
is the probability distribution for the ratio of consecutive level spacings (see
Chap. 16). This distribution and its relatives are suggested [115-117] to be use-
ful in understanding localization in interacting many particle systems.

. RMT for missing levels and incomplete spectra has been discussed for example

in [65, 118-120] and this is of considerable interest in data analysis and for
predictions of missing levels.

. Using the analogy between energy levels and time series, methods of time se-

ries analysis are applied to RMT spectra showing for example 1/f? noise for
Poisson systems and 1/f noise for GOE/GUE/GSE. There are several investi-
gations in this direction as given for example in [118, 121-126].

. There are applications of RMT for biological networks [127], neural networks

[128], small world networks [129], terrace-width distributions on vicinal sur-
faces of vicinal crystals [130], finding words in literary texts [131] and so on.

. There is extensive literature on results for the rate of convergence of probabil-

ity distributions in RMT and on asymptotic properties of a variety of random
matrices; see for example [54, 96, 132—-135].

. Extreme statistics in RMT is another important topics that is not discussed in

this Section. An example is the probability distribution for the largest or the
lowest eigenvalue in GOE. Tracy-Widom distribution is the starting point for
all these investigations. See [134—144] and references therein.

. New classification of random matrices, extending Dyson’s 3-fold way to 10

classes, based on group theory is given in [145-147]. These new classes have
applications in condensed matter physics. They also include chiral ensembles
for QCD related applications [148—152].

Random matrix theory for random phase approximation (RPA), a widely used
quantum many-body approximate method, has been introduced in [153].
Random matrix theory for scattering and Ericson fluctuations is an important
topic that is not discussed in this section. Good references for these are [154—
158].

Numerical methods and algorithms for constructing and analyzing random ma-
trices of large dimensions are available for example in [159, 160].
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Chapter 4
Embedded GOE for Spinless Fermion Systems:
EGOE(Q2) and EGOE(k)

Matrix ensembles generated by random two-body interactions, called two-body ran-
dom ensembles (TBRE), model what one may call many-body chaos or stochasticity
or complexity exhibited by these systems. These ensembles are defined by repre-
senting the two-particle Hamiltonian by one of the classical ensembles (GOE or
GUE or GSE) and then the m > 2 particle H matrix is generated by the m-particle
Hilbert space geometry [1-3]. The key element here is the recognition that there
is a Lie algebra that transports the information in the two-particle spaces to many-
particle spaces [3-5]. Thus, in these ensembles (for many particle systems) a random
matrix ensemble in two-particle spaces is embedded in the m-particle H matrix and
therefore these ensembles are more generically called embedded ensembles (EE)
[3, 6]. With GOE (GUE) embedding we have then EGOE(2) [EGUE(2)] with ‘2’
denoting that in two-particles spaces the H matrix is represented by a GOE. Due to
the two-body selection rules, many of the m-particle matrix elements will be zero.
Figure 1.1 gives an example of a H-matrix displaying the structure due to two-body
selection rules which form the basis for the EE description. Present understand-
ing is that EE generate paradigmatic models for many-body chaos [7, 8] (one-body
chaos is well understood using classical ensembles). Simplest of EE is EGOE(2)
[BEGOE(2)], the embedded Gaussian orthogonal ensemble of random matrices for
spinless fermion (boson) systems generated by random two-body interactions. Let
us begin with EGOE for spinless fermion systems.

4.1 EGOE(2) and EGOE(k) Ensembles: Definition and
Construction

The embedding algebra for EGOE(k) and EGUE(k) [also BEGOE(k) and
BEGUE(k)] for a system of m spinless particles (fermions or bosons) in N single
particle (sp) states with k-body interactions (k < m) is SU(N). These ensembles
are defined by the three parameters (N, m, k). The EGOE(2) ensemble for spinless
fermion systems is generated by defining the two-body Hamiltonian H to be GOE
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Fig. 4.1 Figure showing some configurations for the distribution of m = 6 spinless fermions in
N = 12 single particle states. The m-particle configurations or basis states are similar to the dis-
tributions obtained by putting m particles in N boxes with the conditions that the occupancy
of each box can be either zero or one and the total number of occupied boxes equals m. In
the figure, (a) corresponds to the basis state |vjvov3v4vs5v6), (b) corresponds to the basis state
[v1v3vav7V9V10), (€) corresponds to the basis state |viv2vgv7V11V12) and (d) corresponds to the
basis state |vgv7Vg8V9VIQV]])

in two-particle spaces and then propagating it to many-particle spaces by using the
geometry of the many-particle spaces [this is in general valid for k-body Hamilto-
nians, with k < m, generating EGOE(k)]. Let us consider a system of m spinless
fermions occupying N sp states. Each possible distribution of fermions in the sp
states generates a configuration or a basis state; see Fig. 4.1. Given the sp states |v;),
i=1,2,..., N,EGOE(2) is defined by the Hamiltonian operator,

H= Z (vkvg|ﬁ|vivj)azza1kavi ay; . 4.1

Vi <Vj, Vg <Vg

The action of the Hamiltonian operator defined by Eq. (4.1) on the basis states
[viva---vy) (Fig. 4.1 gives examples) generates the EGOE(2) ensemble in
m-particle spaces. The symmetries for the antisymmetrized two-body matrix ele-
ments (vkve|ﬁ|vi v;j) are

(kalﬁlvjvz') = —(VkVelﬁIViVj%
. . 4.2)
(vkvelHvivj) = (vivj| H|vpve).

Note that a,, and ai{_ in Eq. (4.1) annihilate and create a fermion in the sp state
|v;) respectively. The Hamiltonian matrix H (m) in m-particle spaces contains three
different types of non-zero matrix elements (all other matrix elements are zero due
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to two-body selection rules) and explicit formulas for these are [7],

(iva v Hviva-vph = Y (v Hlvivy),
v,'<vj~§vm

Vm

-~ -~ 43
(Wpvavs vl Hlvva - vm) = 3 vpuil B o), *3)

Vi=v)

(Vpvgus -+ vy [H[vivav3 - - vp) = (Vpvg | H[viv2).

Note that, in Eq. (4.3), the notation |vjv; - - - v, ) denotes the orbits occupied by the
m spinless fermioni. The EGOE(2) is defined by Eqs. (4.2) and (4.3) with GOE(v?)
representation for H in the two-particle spaces, i.e.,

(vr ve| H [v;v;) are independent Gaussian random variables

(v ve|H|v; vj) =0, (4.4)
= 2

|(ukvel Hlviv)|” = v2(1 4 8y, ke))-

In Eq. (4.4), ‘overline’ indicates ensemble average and v is a constant. Now the
m-fermion EGOE(2) Hamiltonian matrix ensemble is denoted by {H (m)} where
{...} denotes ensemble, with { H (2)} being GOE. Note that, the m-particle H-matrix
dimension is d (N, m) = (Z ) and the number of independent matrix elements is
df(N,2)[df(N,2) + 1]/2; the subscript ‘f’ in dy(N,m) stands for ‘fermions’.
Computer codes for constructing EGOE(2) ensemble have been developed by many
research groups; see for example [7, 9—12]. Just as the EGOE(2) ensemble, one can
define k-body (k < m) ensembles EGOE(k) (these are also called 2-BRE, 3-BRE,

. in [13]) with GOE representation for the H matrix in k particle spaces (thus
here we have random k-body interactions). It is possible to derive analytical results,
using BCA, for some properties of the general EGOE(k). We will turn to these now.

4.2 Eigenvalue Density: Gaussian Form

4.2.1 Basic Results from Binary Correlation Approximation

Binary correlation theory for the moments of the eigenvalue density generated by
spinless EGOE(k) has been developed by Mon and French [3, 14] and the moments
given by BCA correspond to the moments in the dilute limit defined by m — oo,
N — 00,k — ooand m/N — 0 and k/m — 0. Alternatively one can use the con-
dition that £ is finite and k/m — 0. We will describe the BCA for EGOE(k) in some
detail here.

Let us begin with a kg -body operator,

Hkp) =Y vl o' ki) Bkn). (4.5)
o,
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Here, o (kp) is the kg particle creation operator and (kg ) is the kg particle anni-
hilation operator. Similarly, vOIfI’S are matrix elements of the operator H in kg particle
space i.e., v?f = (kg B|H |kgo) (some authors use operators with daggers to denote
annihilation operators and operators without daggers to denote creation operators).

Following basic traces will be used throughout,

Zoﬁ(k)a(k) = <Z> = <Zoﬁ(k)a(k)> = (’Z) (4.6)
> alke’ (k)= (Nk_ﬁ> = <Za(k)oﬁ(k)> = <’Z> Ai=N—m.

~

n—k

Setwsganr= ("1 )sw)

o <2a:aT(k)B(k/)a(k)>m _ (’" . k/)B(k/). @43)
Sawn)ew= ("0 )

N G o

Equation (4.6) follows from the fact that the average should be zero for m < k and
one for m = k and similarly, Eq. (4.7) follows from the same argument except that
the particles are replaced by holes. Equation (4.8) follows first by writing the k’-
body operator B(k") in operator form using Eq. (4.5),

B(K')=> " v BT (K)y (k). (4.10)
By

and then applying the commutation relations for the fermion creation and anni-
hilation operators. This gives ) By vgy BTk Do o (ak)y (k). Now applying
Eq. (4.6) to the sum involving « gives Eq. (4.8). Equation (4.9) follows from
the same arguments except one has to assume that B(k’) is a fully irreducible
k’-body operator (Chap. 5 makes clear the notion of ‘irreducible’ operators) and
therefore, it has particle-hole symmetry. For a general B(k") operator, this is valid
only in the N — oo limit. Therefore, this equation has to be applied with cau-
tion.
Using the definition of the H operator in Eq. (4.5), we have
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(HkmH k)" = > (5 e k) Bk BT ko))"
a.B

= v%{<Za*<kH>{Zﬂ(kH>ﬁT(kH)}a(kH>>
o B

=v5T(m, N, k). 4.11)

As H is taken as EGOE (kg ) with all the kg particle matrix elements being Gaussian
variables with zero center and same variance (diagonal matrix elements variance
being twice that of off-diagonal matrix elements). This gives (v%ﬁ )2 = v%i to be
independent of the o and 8 labels. It is important to note that in the dilute limit,
the diagonal terms [« = § in Eq. (4.11)] in the averages are neglected as they are
smaller by at least one power of 1/N and the individual H’s are irreducible K-
body operators. These assumptions are no longer valid for finite-N systems and
hence here the evaluation of averages is more complicated. In the dilute limit, we
have

T(m,N,kn) = <Zoﬁ(kﬂ>{Zﬂ(kmﬂ*rkﬂ)}a(kﬁ)>
o B
~ k m
(i ammn)

_<n~1+ky)<m) @.12)
T\ ky ky ) ’

Note that, we have used Eq. (4.7) to evaluate the summation over 8 and Eq. (4.6) to
evaluate summation over « in Eq. (4.12). In the ‘strict” N — oo limit, we have

T(m, N, k) "= (Z;) <k]\;> (4.13)

In order to incorporate the finite- N corrections, we have to consider the contribution
of the diagonal terms. Then, we have,

T(m, N, k) = (g)[(m;;kﬂ) +1}. (4.14)

Going beyond (H H), let us consider averages involving product of four opera-
tors of the form

(H (k)G (kg)H (ki) G (ko))"

where the operators H and G being of body ranks kg and kg respectively and they
are represented by independent EGOE(k ) and EGOE(kg) ensembles respectively.
Now, there are two possible ways of evaluating this trace. Either (a) first contract the
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H operators across the G operator using Eq. (4.9) and then contract the G operators
using Eq. (4.8), or (b) first contract the G operators across the H operator using
Eq. (4.9) and then contract the H operators using Eq. (4.8). However, (a) and (b)
give the same result only in the ‘strict’ N — oo limit and also for the result incor-
porating finite N corrections as discussed below. In general, the final result can be
expressed as,

(H (k)G (k6)H (k)G (k)" = vy vg F(m, N, ku, kg). (4.15)

In the ‘strict’ dilute limit, we have

(v}v2) " (Hki) G (kc)H (ki) G (k)"

= > («" ki) Bkn)y" (k) (k)BT (ki) (km)sT (ke)y (ke))"
o,B,v,8

~ _ k k K m
(m kcj H) >l )y ke)s (ka)a k)8’ (ke)y (ko))
a,y,8

m—kg +k m—k .
- ( kc; H)( ki G) Y [ ke)ske)s" ke )y (k)

y,8
:(n~1—kG+kH><m—k6><n~1+k(;><m)' 4.16)
ky ky kg kg

Here in the first step 8 and A7 are contracted using Eq. (4.9) giving (’ﬁk_:c ) and then
it is taken out of the trace. In the second step «' and « are contracted. Then we are
left with a term that is similar to Eq. (4.12) and this gives the final result. Now in

the ‘strict’ N — oo limit, F(m, N, kg, kg) is

oo =(" ()5 ()
(")) e

In order to obtain correct finite-N corrections to F(---), we have to contract over
operators whose lower symmetry parts can not be ignored. The operator H (kp)
decomposes into irreducible symmetry (or tensorial) parts .% (s) denoted by s =
0,1,2,..., kg with respect to the unitary group SU(N); see Chap. 5. For a kg-
body number conserving operator [3, 15], we have (see also Chap. 5)

ky .
Hlp) =Y (]:; _ss)ﬂ(s). (4.18)

s=0
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Here, the .#(s) are orthogonal with respect to m-particle averages, i.e.,
(F($)FT(s))™ = 855. Now, (H (kpr)G (kG) H (k)G (kg))™ will have four parts,

(H (k)G (k) H (k)G (ko))"

=vpvg Y (o ki) Bkn)y' (k)8 k)BT (ki (ki)8" (k) y ke))"
a,B,y,8

+vivg Y (o kmatkn)y " (ke)s (ko) (ke kn)s’ (ke)y (ke))"
o,y,8

+oivd Y (e ki) By ke y k)BT kmakm)y  (ke)y (ko))"
By

+upvg Y (o kmakn)sT (ke)8ka)e (ke (km)sT (k)8 (ke))"
o,

=X+Y1+1r+Z. 4.19)

Note that we have decomposed each operator into diagonal and off-diagonal parts.
We have used the condition that the variance of the diagonal matrix elements is
twice that of the off-diagonal matrix elements in the defining spaces to convert the
restricted summations into unrestricted summations appropriately to obtain the four
terms in the RHS of Eq. (4.19). Following [14, 16, 17] and applying unitary decom-
position to y8T (also 8y ) in the first two terms and o8 (also Ba™) in the third term
we will get X, Y7 and Y;. To make things clear, we will discuss the derivation for
X term in detail before proceeding further. Applying unitary decomposition to the
operators y T (kG)8(kg) and y (kg)8' (kg) using Eq. (4.18), we have

X=vivg ) Z( s) (o k) Bke) F) 5 ()87 (ke (k) Frys (5))".
o,B,y,8 s=0
" (4.20)

Contracting the operators 88" across .% s using Eq. (4.9) and operators o across
Z using Eq. (4.8) gives,

5 9 G m—s\2 (i +ky —s\ (m—s ot m
X = v}l ) ( o )( ‘o )Z(Jya(s)ﬁyg(s» . (421)
s=0

kg —s v
Inversion of the equation,
kG
Y (v (k6)8 k)8 (ka)y (k)" = Qm) =y <kG B s) Z F5()Fys )",
V.0 s=0 y,8

(4.22)
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gives,

kG—S

() (e

- (=D [N —t —ke)'1?
X (N=2s+1) ; (s —DOUN —s —t+ DN —1)! QN =1). (4.23)

_ 2
(’" “‘) N 56 Fys))"
y.,8

For the average required in Eq. (4.22), we have

. w (tk
om) = (v (ke)8(k6)8" (ka)y (ko))" = (’” - G) ("’) (4.24)

wr kG kG

Simplifying Eq. (4.23) using Eq. (4.24) and using the result in Eq. (4.21) along with
the series summation [14]

N

Z (=D)'""(N —t —kg)!(kg +1)! k!N — k¢ —s)!<kG> <N+ 1)
s—DWN2(N—=s—t+1D!  (N+1—s) ’

N N

t=0
(4.25)

the expression for X is,

X =vjvg F(m, N, ky, ke);
kg 2~ ~
m—s m+kg—s\(m—s\/m\{m\/(N+1
F(@m,N,ky,kg) =
it =2 () (") ()G )
N—=2s+1/N—s\""(ke\ ™"
Sl * ) . (4.26)
N—-—s+1 kg s
Although not obvious, X has kg < kg symmetry. This is easy to verify for
ki,kg < 2. In the large N limit, Y7, Y> and Z are neglected as X will make the

dominant contribution; Ref. [17] gives the formulas for Y;, Y> and Z. Thus, in all
the applications, we use

(H(ky)G (kg)H (kp)G (k)" = X = v vg F(m, N,k kg) (4.27)

with Eq. (4.17) or (4.26) for F(m, N, kg, kg) as appropriate.
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4.2.2 Dilute Limit Formulas for the Fourth and Sixth Order
Moments and Cumulants

In this section throughout we will use Eqgs. (4.13) and (4.17) for the functions T
and F respectively, i.e. we will use the strict N — oo limit. Also in this section, we
will take H to be a k-body operator. As odd order cumulants vanish for EGOE(k),
the lowest two cumulants that give information about the shape of the eigenvalue
density are the fourth (k4) and sixth (kg) order cumulants. For these we need to
consider first the fourth moment and the sixth moment.

For the fourth moments given by (H*(k))", in BCA there will be three different
correlation patterns that will contribute (we must correlate in pairs the operators for
all moments of order >2),

(H*())" = (H (k)H (k)H (k) H (k))"
| I | I—

+ (H (k)H (k)H (k)H (k))"
"t

+(H()H (k) H (k) H (k))". (4.28)
S e——

In Eq. (4.28), we denote the binary correlated pairs of operators with the symbol
H H . The first two terms on the RHS of Eq. (4.28) are equal due to cyclic invariance

L
and follow from Eq. (4.11),

(H()H (k) H (k)H (k)" = (H (k)H (k)H (k) H (k))"
| I— | I— I_‘:|_l

= [(H2W0)"]*. (4.29)

Similarly, the third term on the RHS of Eq. (4.28) follows from Eq. (4.27),

(H()H (k)H (k)H (k))" = vh F(m, N, k, k). (4.30)

Combining Egs. (4.28), (4.29) and (4.30), (H*(k))™ is given by,
(H* ()" = v [2{T (m, N, O} + F(m, N, k, k)] 431)

Finally, fourth order cumulant k4 in the dilute limit is

ki = yo=[[H2 W) ] X (HA W) — 1= (’" . k) (’Z)_l -1

2 20k — 1)2
LR RR—1?

— S+ o(1/m). (4.32)
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In the last step we have used the expansion of binomials in powers of 1/m using,

m—r_Tfl_lk k(k—1)
(k )‘M[_m{r+ 2 }

1 [ktk—1] , Bk—-—1)(k=2) 1
+W{ > [r +(k_1)r+Ti|}+O<$>j|.

(4.33)

Therefore, for example for a two-body operator (as in nuclei and atoms) as m in-
creases, the excess parameter y» (or k4) goes to zero indicating that the density
approaches Gaussian. We will confirm this further by deriving a formula for k. Be-
fore turning to this, it should be added that formulas for lower order moments for
EGOE(2) were also derived by Gervios [18].

For the sixth moment ((H (k))6)m there are 15 binary association diagrams and
they are

(HO (k)"

==(1ﬁ(k)fﬂ(k)lfﬁk)1¥§k)fﬂ(k)1¥§k)yn
1

® (H (0 H(k) H K H (k) H (0 H )| & (H (0 H k) H (k) H () H () H (k)|
1

® (H(OH®OH K H (O H O H(K)" & (H (0 H (O H k) H () H () H (K"
L 1T 1 I—:,—I

& (HIOHOHOHOEOH®]" & {HBEOHOHOH©H O]
[ I [ [ I |

L1

@ (H (k)H (k) H (k) H (k) H (k) H (k)" & (H (k) H (k) H (k) H (k) H (k) H (k))"
L I | L | |

® (HIOHKHK H®H®H®)" © [Hk)HE H®HEHE H®]"
s ]

® (H (0 H) H K H (k) H (0 H K| & (H (0 H k) H k) H (0 H (0 H k)|
|

I

GB(fﬂ(k)Iﬂ(k)1¥§k)1{(k)11fk)11fk))m @ (H (k) H (k) H (k) H (k) H (k) H (k))"".
|

(4.34)

As all the correlated H’s in Eq. (4.34) are dummy operators, it is easy to see that
the first five terms on RHS of Eq. (4.34) are all same. Similarly, the next six terms
and also the following three terms are same. This gives,
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(o]

= 5(H|(k)Hl(k)HI(k)Hl(k)Hl(k)Hl(k))m @ 6(H (k) H (k) H (k) H (k) H (k) H (k)"

® 3(H () H (k) H () H (k) H (0 H (k)|
e |

@ (H (k)H (k)H (k) H (k) H (k) H (k)" (4.35)

The first correlation diagram in Eq. (4.35) is simply {(H 2(k))ym}3. With the nor-
malization, which we will use from now onwards, v%, (IZ ) =1, this gives (’,’j)3 The
second correlation diagram is also simple as we can take out the two directly corre-
lated H'’s outside the average and then we are left with (HG H G)™ type term. This
gives (mk_k) (’,2’)2 For the third correlation diagram, we can use the rule, that follows
from Egs. (4.8) and (4.9),

i i _2(Myt
a' (k)BUH (k)" (kKa(k) =v e )¢ (k) H (k) (k)

2 N\ (m —k . m—k
=v (k)( X >H(k)_< X >H(k). (4.36)

By contracting the first and third correlated H’s and similarly the fourth and the

. . . . 2
sixth H’s in the average gives the third term to be (" *)” (7). In the last correla-

tion diagram, we have to necessarily contract across two H’s i.e., we have to con-
tract two H’s across an effectively 2k-body operator. Then, first contracting the first
and the fourth correlated H’s, we are left with (HGH G)™ type term. This gives
(") (") (). Substituting these results, Eq. (4.35) gives

=) (") (5)
SR e

First converting the sixth order moment into sixth order cumulant k¢ using Eq. (B.5)
gives,

ke —5-9 m\ " (m—k 43 m\ 2 (m—k 2+ m\ 2 (m—k\ (m—2k
°= k k k k k k ko)
(4.38)
Now, expanding the binomials in Eq. (4.38) in powers of 1/m using Eq. (4.33), we

have
k3 (6k — 1 1
m

m
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Similarly, for the eight order cumulant [7] we have

—4k> -
k =w+0< ! )

. (4.40)

8 3

m m

Equations (4.32), (4.39) and (4.40) clearly show that in the dilute limit, as m in-
creases (from m = k) the density approaches Gaussian as the cumulants k, approach
zero. In fact if we neglect all the cross correlated terms in the moment expressions,
clearly we have o, = (2r — 1)!! and they are the reduced central moments of a
Gaussian. Although this result is derived for the dilute limit, in practice Gaussian
form is seen even when the stringent dilute limit conditions are not valid (see Chap. 5
for examples). Thus the eigenvalue density tends to Gaussian form for EGOE(k).

For m =k, EGOE (EGUE) reduces to GOE (GUE) and the state density then is a
semi-circle. For fixed k as we increase m starting from k (or vice verse) there will be
semi circle to Gaussian transition in state densities. Numerically this was studied in
the past [6] but the transition point was not known. Simplifying Eq. (4.32) for fixed
(m,k) and N — oo, it is seen that y» — —1 for m < 2k. This is suggestive that
m = 2k is the transition point. To prove this conclusively, Benet et al. [19, 20] solved
EGUE(k) [it is possible to solve EGOE(k) also] using super symmetry (SUSY)
method and showed that the density is semi-circle for m < 2k. It is also proved
that there will be non-vanishing corrections to the semi-circle shape for m > 2k.
However the SUSY method fails for m > 2k and therefore SUSY method could not
be used to prove that for m > 2k the eigenvalue density takes Gaussian form. In
conclusion, as m increases from k, state densities exhibit semi-circle to Gaussian
transition with m = 2k being the transition point.

4.3 Average-Fluctuation Separation and Lower-Order Moments
of the Two-Point Function

4.3.1 Level Motion in Embedded Ensembles

Given a normalized state density p(E), it is possible to expand it in terms of its
asymptotic (or smoothed) form p(E) and the orthonormal polynomials P, (E) de-
fined by the asymptotic density. For EGOE ensembles p(E) is a Gaussian, i.e.
P(E) = py(E) = (v/2mo) " exp[—(E — E.)?/202]. Then the Gram-Charlier (GC)
expansion [21] gives,

p(E) =pg(E){1 + Z(:!)‘lngeaE)}. (4.41)
¢=3

In Eq. (4.41), E= (E — E.)/o is the standardized E. The centroid E, = (H)™
and the variance 02 = (H2)" — E? of the Gaussian pg are same as that of p. He,
are Hermite polynomials and S; are, in principle, related to higher moments of the
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state density p(E). One can apply Eq. (4.41) to EGOE(2) and BEGOE(2) by noting
that for fermions in the dilute limit and for bosons in the dense limit (see Chap. 9),
P(E) = pgy(E). Thus, at this stage distinction between boson and fermion systems
is not important. We will not consider boson systems here and return to them in
Chap. 9. Since S;’s change from member to member of the EGOE(2) ensemble,
one can treat them as independent random variables with zero center,

Se =0,  S;Sy=0 for¢#¢. (4.42)

This is consistent with the result p(E) = py (E) where the "bar’ denotes ensemble
average. Each ¢ term in Eq. (4.41) represents an excitation ‘mode’ and the wave-
length of the modes is proportional to ¢ ~!. Therefore small ¢ terms are long wave-
length modes and large ¢ are short wavelength modes. The distribution function
F(E), the integrated version of p(E), is F(E) = dfoi p(E"dE' where d is the
dimensionality. Deviation of a given level with energy E from its smoothed (with
respect to the ensemble) counter part E gives the level motion. In terms of F(E)
and the local mean spacing D(E), we have E = E — E = [F(E) — F(E)]D(E).

Then, the variance of the level motion is given by the ensemble average of S(LE);.
Using Eq. (4.41) we have easily,
BE? T—2
5 = [F(x)— F(x)]
D(E)
2 22 12
=d*0*[py(E)] {Z(;!) ZS?[He;_l(E)] } (4.43)

¢=3

By adding centroid and variance fluctuations, the summation in Eq. (4.43) extends
to ¢ > 1. Then,

SE)? — _
_!2 = dszz[ﬁ%(E)]z{Z({!)_ZSg[He;_l(E)]z}. (4.44)
D(E) =

Thus we need S_g for EGOE and BEGOE and we will address this now.

4.3.2 S_g in Binary Correlation Approximation

Definition of the co-variances X', , and an expression for them in terms of S? are,

Zpq = (HPH) = (HP){H)

:Zs_g(a)l’ﬂ@) (Z)(p—{—l)!!(q—;“—l)!!. (4.45)

¢=1
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The above relation follows from Eq. (4.41) as

(H?)=(HP)+ Z(;“!)”S; / E? py(E)He, (E) dE. (4.46)
>3
We have used in Eq. (4.45) the fact that op([;) (p — ¢ — D!!is the pth (central)

moment of p(E)He, (E). Note that E. = E. = 0. On the other hand, using BCA we
have [3]

2p.q =<Hp>(Hq>_(Hp)<Hq>

- ﬁ () (%)t =) (o)) = T .

The last term of Eq. (4.47) will cancel with the ¢ = 0 term of the first term. Then
we have,

Sy = X (0) ()i e ) “18)

¢=1 ¢

The Gaussian moments of (HP~¢) are (p — ¢ — 1)!1(0)P~%. Therefore,

SIEDD (?) <Z>(p =g —¢— 1)!!(0)”‘7‘24(}1'1(1,14). (4.49)
=1

Comparing Eqs. (4.49) and (4.45) will give the important relation,

S = (HL(H()(G)_ZC = (0)"% Z¢e. (4.50)

Thus for studying (52) 2 Via (4.44), all we need to evaluate is (H¢)(H?¢).
D L

4.3.3 Average-Fluctuations Separation in the Spectra of Dilute
Fermion Systems: Results for EGOE(1) and EGOE(2)

For one body interactions as discussed by Bloch in 1969 [22], fluctuations are of
Poisson type. The argument is that without interactions there are many conserved
symmetries. An example is U (N1) @ U (N2) @ ——, where N; = 2j + 1 for a nuclear
or atomic shell model j-orbit. Note that the nearest neighbor spacing S, for the
n’thlevel is S, = E,41 — E, where E, ;. =Y ;- ¢ and E, =) ;" €. Here for
example ¢; are the energies of the single particle states that are occupied by the m
fermions for generating the (n 4 1)-th state. Similarly &/ generate the n-th state.
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Then, obviously S,,’s will be uncorrelated giving Poisson fluctuations. In [23] (see
also [8])), the authors argued that there will be effects in the lowing part of the
many particle spectrum that depend explicitly on the structure of the single particle
spectrum. These specific effects are not yet verified in any data analysis. However,
after a critical excitation strength Poisson fluctuations set in. Thus generically, for
correlations and hence for the level repulsion we require k-body interactions with
k > 2. Now, we will consider k = 2 and the results extend to any k > 2 [3, 6].

In the dilute limit H = H (2) will be effectively an irreducible two-body operator.
Chapter 5 gives details of the decomposition of H (2) into irreducible zero, one and
two-body operators. Then, using trace propagation results discussed in Chap. 5,
we have o2 (m) = (H2(2))m dlluglmlt ("21) (H2 (2))2. Here on-wards we will use the
normalization (H?(2))? = 1. Then, o2(m) = (H?*(2))" = (). Also, in the dilute
limit, as H(2) is an irreducible two-body operator, the propagation equation for
(HP)™ is

(Hp>m _ m(m—l)(N—m)(N—m—l)xép)
NN —1)(N—-2)(N —3)
mm—1)(m —2)(N—m)(N—m—1)(N —m — 2)x(p)

N(N — 1)(N —2)(N = 3)(N —4)(N — 5) 3

+

m—00,N—00 m_2 (») m_3 (»
iR i e R
m/N—0 N N

2 2 2\ —1
me (y m° (N ) m 2
—N2x2p = —2 (—2 ) )C2p = <2)(Hp) . (451)

Equation (4.51) gives the correct result for p = 2. Now the cross correlated trace is,

(@) (HE @) = (’;’>2<Hf(2>>2<m<2>>2

2 -2
— 2 (’;’) (1;7 ) . (4.52)

Here, as H in 2-particle spaces is a GOE, we used the GOE result for
(H5(2))2(H%(2))2 given by Eq. (2.60). Now, Egs. (4.50) and (4.52) along with
Ly

o(m) = (’;) will give the important result

o 2—¢ 2
S2=2 (’Z) (ZZ ) . (4.53)
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Substituting Eq. (4.53) in Eq. (4.44) will give the final result for level motion in
EGOE(2),

(8E)? N\? (m\? 3

— 2 [IO%(E)]

D(E) m

fme () () o)

(=1
=06
E=0 1
T \m 2 2
1 L\~ L () 454
BTN (O

Thus, as ¢ increases, deviations in (§E)? from the leading term rapidly go to zero
due to the ("21)_2r, r=1,2,... terms in Eq. (4.54). There will be no change until
¢ ~ m/2, thereby defining separation. Beyond this, for ¢ > m/2 the deviations
grow, i.e. fluctuations set in and they will tend to that of GOE [the GOE nature
of fluctuations is seen in large number of numerical calculations and therefore it
is conjectured in [3, 6] that the EGOE fluctuations in energy levels and strengths
will follow GOE—however there is no analytical proof]. Note that for GOE, from

Eq. (2.67), we have

-
@ E29 Y inoa, (4.55)
D(E)

2T 2

where y is Euler constant and d is m-particle H matrix dimension. It is important to
stress that the BCA for EGOE(2), that gave Eq. (4.54) fails for ¢ > m /2. However,
before this limit is reached separation sets in. An important consequence of the
separation is that the only a few long wavelength modes are required to define the
averages. Thus we need a few lower order moments for spectral averages and they
can be calculated using trace propagation equations without recourse to H matrix
construction and diagonalization. The separation and the GOE nature of fluctuations
(then they will be small) form the basis for statistical spectroscopy (SS) [24]. We
will discuss this further in Chaps. 5 and 7.

4.3.4 Lower-Order Moments of the Two-Point Function and Cross
Correlations in EGOE

Unlike GOE, for EGOE’s with N the number of single particle states fixed, two-
point function involves in general the two energies drawn from the spectra for two
different particle numbers say m and m,. It is important to note that the GOE in
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the defining space will be same for the systems with m1 fermions and m, fermions
as N is fixed. The two-point function SP1:"2:N (x| x,) is defined by

semomaN ey xp) = (8(H — x))y (8(H — x2))y" — (8(H — x)y' (§(H — x2))y.

(4.56)
Here, in the densities we have also shown N explicitly to stress that N is same in
all the densities. In general we have m| = m, or m| % m». The bivariate moments
X p.q in Eq. (4.45) are the moments for the two-point function with m; = m5. Sim-
ilarly the level motion, discussed in the previous subsections, for a (m, N) system
derives from SP"" N (x;, x»). More importantly, Eq. (4.56) shows that EGOE gen-
erates cross correlations, that is correlations between spectra with different particle
numbers, as the bivariate moments

Spgmi.ma. Ny =[HOR (T ~[HPT (BT @57)
will be in general non-zero for m # mj. It is important to stress that so far all
attempts to derive the form of SP"! m2.N (x1. x») for EGOE have failed; see for ex-
ample [3, 25, 26]. However, it is possible to derive the formulas for the lower order
bivariate moments, i.e. X' ;,(m1, mp, N) with p + g < 4. These give some infor-
mation about cross correlations generated by EGOE. We will discuss this important
aspect in later chapters and in detail in Chap. 12.

4.4 Transition Strength Density: Bivariate Gaussian Form

The strength R(E;, E y) generated by a transition operator & in the H-diagonal ba-
sisis R(E;, Ef) =(Ef | O | E;) 2. Correspondingly, the bivariate strength density
Ipiv.0(Ei, E¢) or ppiy. o(E;, E¢) which is positive definite and normalized to unity
is defined by

Ioivso (Eis Ep) = ({076(H = EpO8(H — Ep))
= 1T (EpEFIOIEN T (Er)
= ((ﬁﬁ»/)bw;ﬁ(Ei, E¢). (4.58)

With ¢; and €7 being the centroids and oiz and o2 being the variances of the
marginal densities ;. (E;) and py.5(Ef) respectively of the bivariate density

Ppiv: 0 the bivariate reduced central moments of are (1, = (0 T(Ha;fef Y o (%)p )

/(0T 0) and ¢ = 1y is the bivariate correlation coefficient. In order to obtain the
asymptotic form of pp;,.s for EGOE, formulas for i ,, with p +¢g =4 and 6 are
derived using BCA and thereby the reduced cumulants kp, with p +¢ =4 and 6.
Firstly, H is represented by EGOE(k). Given the transition operator & of body
rank ¢, we can decompose it into a part that is correlated with H and represent
the remaining part say R by a EGOE(#) independent of EGOE(k) representing H.
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Then & = aH + R and the o H term generates the expectation values or the diag-
onal matrix elements (E|C|E) where E are H eigenvalues. Note that, as H and
R are independent, o« = (0'H)/(H?). Therefore R generates the off-diagonal, in
the H diagonal basis, transition matrix elements [(E ¢|O|E;) |, E; # Ey. Thus, by
removing the diagonal or expectation value producing part of &, we can assume
that H and the part R of & can be represented by EGOE(k) and EGOE() respec-
tively and further they can be assumed to be independent. Once we remove the
aH part from &, we need not to make a distinction between & and R and hence
from now on we use only &. Thus, the theory for transition strengths should be
applied only to the off-diagonal matrix elements. Now, we proceed to derive for-
mulas for the bivariate moments u,, using BCA with independent EGOE(k) and
EGOE(?) representations for H and & respectively [16, 27]. The matrix elements
variances v%{ and vzﬁ respectively in the defining space will be in general different
for EGOE(k) and EGOE(¢). However they will not appear in the formulas for (i p,
as these are reduced moments. It is useful to point out that the correlations in g
arise due to the non-commutability of H and & operators. Firstly it is seen that all
u fq with p +¢ odd will vanish on ensemble average and also ppg = ftyp. Moreover
of = (oToH*" (0t 0)Y" = (H?) and a = 01 . Thus the first non-trivial moment
is w11 and it is given by,

¢=pn={{0TOO0O)" (HOH®)"}(0TOHKOMHK)". (459

Applying Eqgs. (4.11), (4.13), (4.15) and (4.17) will then give,

m\ " fm—t kt k(e — Dt —1) 1
g:(k> ( L )Zl_Z”LTJrO(ﬁ)' (4.60)

In the cases with p + g = 4, the moments to be evaluated are (49 = (os, U431 = K13
and j157. The diagrams for these follow by putting &' and ¢ at appropriate places
in the (H*) diagrams in Eq. (4.28). Firstly, 1104 is given by

nos = [(070)" (H2")"] {0 H ) 0"
= [[oro)" (m2)")] (e o) (HH )"

—24 (" =y _ 461
= +<k> ( k )‘“‘“" tob

Here we have used independence of & and H ensembles and used BCA that led to
Eq. (4.32). Similarly,

m my\21—1 m
piz=[(@7O)" (H?)")"] " [(€7 H () H () H (k) O H ()

& (OTH (k) H (k) H (k) O H (k)"
1

@ (OTH (k) H (k)H (k) O H (k))"]. (4.62)
e
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The first two terms in Eq. (4.62) are equal and the directly correlated H—H pair
can be removed from the trace giving ('Z) Then we are left with (0T HOH)™ term
m—t

that gives (", )(’:’) In the last term, we have to first contract the first and third
H’s across the second H giving (mk_k) factor. Then we are left with (0T HOH)™

m—t

term that gives ( ‘ )('?) using Eq. (4.36) for contracting H’s across the & operator.
Combining all these, we have

= () D)) () o

Alternatively, it is possible to consider u3; and this gives immediately Eq. (4.63).
Note that u3; involves (07 H ¢ H3)™ with ¢ and € correlated and [(’lf’)]_1 (’"t’k) =
[(Z’)]_1 (mk_t) This proof also gives immediately that 115 = us1 = ¢ ios. Now, we
will consider wo> where

un = [oto)" (H?)")’]™ [(oTH @ H O TH K H ()"

® (ﬁTHl(k)Hgk)ﬁH(lk)H(lk))’"
|

®(OTH () H(k)OH (k) H (k))"]
B e—

-2 2 2
m m m—t m—k—t\ (m-—t
= . (4.64
() [G) =) =) () we
The first term in Eq. (4.64) is simple as we can take out the correlated pairs of H’s

from the trace. The second term follows by applying Eq. (4.36) twice for the con-
traction of H’s across ¢'. The third term follows by first contracting two H’s across

H O operator (effective body rank k + t) and then we are left with the (0T H O H)™
term. Using (4.60), (4.61), (4.63) and (4.64), formulas for the 4th order cumulants
are obtained and they are

—1
m m—k
04 40 Ho4 (k) ( k )

B k2+k2(k—1)2+0 1
T om 2m? m3 )’

k2 K2[(k — 1)? + 2kt] 1
kiz=k3y1=p13 —=3u11 = ka =—— + 3 +0 ,
m 2m

m—k—t\ (m—1t\""
k22=,u22—2ﬂ%1_1=§2{< L )( k) —1}

K2 K[k — 12 + 4kt — 2t 1
i (Gl Vi [
m 2m m3
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In order to establish the structure of the bivariate cumulants, the cumulants to order
p + q = 6 are also derived starting with the 15 diagrams in Eq. (4.34). Following
the o4 and w13 derivations, we have simply,

(4.66)

®15 = §[L06-

Here we have used Eq. (4.37) and ¢ is given by Eq. (4.60). Now, we will consider
W24 and it is given by,

o =[(070)" (HY)")']
x [({&TH (k)H (k)0 H (k) H (k) H (k) H (k)

® 0" H()H (k)OH (k) H (k) H (k)H (k) }
L | L | | |

@ | ﬁTHI(k)Hl(k)@’H(lk)H(lk)Hgk)H(lk)
| I

@ ﬁ*ka)Hgk) ﬁHgk)Hgk)H(lk)H('k)

® OTH(OH () OH (k) H (k) H (k) H (k)
L | I |

® [OTH () H (k)0 H (k) H (k) H (k) H (k)
—_— |

@ ﬁTHgk)Hg)ﬁHgk)H(lk)H(lk)H('k)

® 0" H(k)H (k) O H (k) H (k)H (k) H (k) }
e — | | |

® {0"H k) H &) OH (k)H (k) H (k) H (k)

® OTH(OH () OH (k) H (k) H (k) H (k)
1

@ {ﬁ"'Hl(k)Hgk)ﬁch)H(Ik)H(lk)H(|k)
L I
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Table 4.1 Diagrams for the bivariate reduced moment w24 and the corresponding BCA formulas.
In the table, X = [(0T0)" ((H2)™)3]

Correlation diagram Formula in BCA
X~12(6YAAGCCBB)" 2
(OTACOCABB)" m\ 2 (m —1\?
X~'3(6TACOCABB)" 3<k> ( : )
X’%W 3 m\ "2 (m—t\ (m—t—k
k k k
- N3 I — N\ S — £\ 2
X~'2(6TACOBCBA)" 5
k k k
X~12{6TACGBABC)" L\ =K fm ) ==k
k k k k

X"YOTAAGCBCB)"

0.
e () ()
§

X~YOTACOBCAB)Y"

® 0 H(k)H(k)OH (k)H (k)H (k) H (k) }
S E— | |

® 0T H(k)H (k)0 H (k)H (k) H (k) H (k)
L | L | |

@ ﬁ*Hgk)Hgk)ﬁHgk)H(lk)H('k)H(k)

® ﬁ*Hgk)Hgk)ﬁHgk)H(lk)H(lk)H(k))’"]. (4.67)

For simplicity, the ‘overline’ symbol is dropped in Eq. (4.67). All the terms in ‘{}’
brackets are equal and we show in Table 4.1, using the same alphabet for correlated
pairs of H’s, the diagrams and the formula for them in BCA. The first seven terms
in Table 4.1 are easy to recognize following the results already given before using
BCA. The last term is special as we need to contract over two operators that are
correlated in a different way than in all the other diagrams we have considered so
far. Therefore, this needs special treatment as discussed in the context of the 8th
moment of the eigenvalue density in [3]. Finally, in BCA w33 can be written as
follows (again here also the ‘overline’ symbol is dropped everywhere),
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uss=[{o"o)" (H)")']
x [({"H () H (k) H (k) OH () H (k) H (k)
1

@ ﬁmgk)H(Ik)Hgk)ﬁH(lk)Hgk)H(lk)

® 0T H(k)H (k) H (k)0 H (k) H (k) H (k)

® ﬁ’Tka)Hgk)H(lk)ﬁH?k)H(Ik)H(|k)}

& (0T H (k) H (k) H (k) O H (k) H (k) H (k)
—t | —

® 0" H(k)H (k)H (k) O H (k)H (k) H (k)
— L ="

@ ﬁ*H?k)Hgk)H(lk)ﬁHgk)H(lk)H(lk)

® ﬁ’THgk)H?k)H(Ik)ﬁ’H?k)H(Ik)H(|k)}
L

® OV H (k) H (k) H (k)0 H (k) H (k) H (k)
=]

@ {ﬁ*Hl(k)Hgk)Hgk)ﬁH(Ik)H(Ik)H(k)

P ﬁTHEk)Hgk)Hgk)ﬁH(lk)H(lk)Hﬁk)}
[ I

® ﬁ’"‘ch)Hgk)H(lk)ﬁHgk)H(lk)H(lk)
| |

® {ﬁTHI(k)Hgk)Hgk)ﬁH(Ik)Hgk)H('k)

® ﬁTHgk)Hgk)Hgk)@’H(Ik)H(lk)H(lk)}

® ﬁTHgk)H$k)H$k)6”H(Ik)H(|k)H(k))m]. (4.68)
L |
|

Just as for wo4, we can write Eq. (4.68) as a sum of seven terms by recognizing that
the terms in a given ‘{}’ will give the same result. In Table 4.2 given are the BCA
formulas for these terms.

From the previous discussion, it is easy to derive all the formulas given in Ta-
ble 4.2. Using the formulas given in Appendix B, all the bivariate reduced moments
can be converted into bivariate cumulants and then the 1/m expansions for the 6th
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Table 4.2 Diagrams for the bivariate reduced moment 133 and the corresponding BCA formulas.
In the table, X = [(0T0)m ((H2)™)3]

Correlation diagram Formula in BCA
-1
- —t
X~14(6TACCOABB)™ 4<’Z> (mk )
-2
X~ '4(6TABAGBCC)™ 4
< > (k) ( K )( K )
-3 3
- —t
X~-(6TABCECBA" ('Z) (mk
-3 2
- _ —r—k
X~12(6TACBGCAB)™ o™) ("IN
k k k
-3 2
X~Y0TABACOCBC)"
( el (k) < K >< K )
-3 2
. _ —k—
X~12(6TABCOCAB)™ 2('}2’) (mk t) (m . t)

-3
B Yery YT m m—ﬂc—t)(m—t—k)(m—z)
X ' (0TACBOACB) (k) < i r «

order cumulants are,

kos = k6o = o6 — 1504 + 30
KB©k—1) kKk—-12Tk—1 1
_ K« )k )=( )+0< )

m4

m2 m3

m4

K36k —1)  K[(k—1)*Tk —1) +kt (6k — 1 1
kis = ks = Ckos = (m2 )Ll i m3) A )]—i—O( )

koa = kap = 124 — jos — 8 13 — 6oz +24¢% + 6
KBk —1) K[k —1>(Tk —1) +t(12k* — 6k — 1)] 1
= — +0 W s

m2 m3

k33 = i3z — 613 — 9¢ oo + 1283 + 18¢
K6k —1) K[k —1)*(Tk — 1) +1(16k* — 13k +2)] N 0( 1 )

m4

(4.69)

m? m3

As discussed in Appendix B, for a bivariate Gaussian all cumulants k,, with
p + g > 3 should be zero. Therefore, using Eqs. (4.65) and (4.69), it is seen
that in the dilute limit (just as in the case of state densities, here also one needs
k%/m — 0), the transition strength densities approach bivariate Gaussian form.
Thus, we have
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Piv:o(Ei, Ef)

EGOE —— —
—> Ppiv;6(Ei, Ef) = ppiv—g.0(Ei, Ef; €i,6f,0i,0¢,8)

1
B 2roiofy/1—¢2
1 E; —¢&; 2 E; —¢; Ef—cey
Xexp{_za—w[( o )_2§< o )( of )
_ 2
+(7Ef il ) ” (4.70)
of

However, for the strict validity of the Gaussian form, kp; =0 for p + g > 3
should be valid for any rotation of the (E;, Ef) variables. To examine this, we
convert the bivariate moments i ,, given above in the (E;, Ey) variables into
those defined for the sum and difference variables (E; + Ey, E; — Ey). Re-
duced moments and cumulants defined by these new variables will be denoted
by p),, and k), respectively. For example, denoting E; by x; and Ey by xa,
we have (without loss of generality, we assume (xi,xp) are standardized vari-
ables)

= ((r1 —x2)?)" = (2x] — 2x1x2)" =2(1 — ¢),

400+ 0] Gy + x4

4(1 + {)2 I(in‘ + 6xfx% + 8x1x§’>m

[ ]

[ ] (4.71)
[4(1+0)2]" (Qua0 + 622 + 8uz1),

[ ]

[ ]

[ ]

401 =02 N —x)¥)"
41— 0)2] " (2x4 + 6x2x2 — 8xyx3)"

-1

1

41 =2)?] (2ua0 + 61122 — 8u3n).

Here, we have used the results (xlz) = (x22) and (xl.2xj) = (sz.xi). Converting the
moments /i, into cumulants k4, we obtain (it should be noted that {’ = 0) using
Eq. (4.65),

/ 211 k2 1
ki =[2(04¢)?] (k40+3k22+4k31)=—z+0 1)

4.72)

_ k—3/2 1
ko, =[2(1 = 0)?] (kg + 3kap — 4k3) = t/ +O<E)'
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Similarly, it is easy to see that u1}; = %, =0 and k|, =k}, = 0. The u}, and k),
are given by
-1 7
why = [4(1—¢H)] @1 4+ x2)% (1 — x2)%)"
-1
=[4(1-2%)] Quao — 2p22), (4.73)

- k(1 — 2k 1
Khy = [2(1 = ¢%)] ™ (kao — ka2) = % + O(W)

From these equations, it is clearly seen that kg4 in the difference variable will
not approach zero even if m is large although all the other cumulants approach
zero as m — oo. Therefore, even in the dilute limit, EGOE will not generate a
strict bivariate Gaussian. To further confirm this result, sixth order cumulants k;,
with p 4+ g = 6 are considered. Following the same procedure as in Eq. (4.72)
for the sixth order cumulants, we get the following results using Eqgs. (4.65) and
(4.69),

Ky = [4(1+ 03] ' Tkeo + 6ks1 + 15ka2 + 10ks3]

K6k —1) 1
== T%Ga)

ks = kis =0, k33 =0
Ky, = [401 = )1 + 2] Tkeo + 2ks1 — kaz — 2k33]

_ k*(32k* — 30k 4 3) 0 1
- 16m? ’

m3 4.74)

Ky, = [401+ )1 — 0)2] koo — 2ks1 — kap + 2k33]

k(—8k?2 —
_ K + 18k 5)+0<L>,
8mt

m2
k(/)6 = [4(1 - §)3]_1[k60 — 6ks1 + 15ksp — 10k33]

16k% — 46k + 35 (1)
=— " 40 .

42 m

It is seen from Eq. (4.74) that the cumulants k), and k{, will not approach zero
even if m is large. Thus, in practice one has to apply the bivariate Edgeworth correc-
tions (given in Appendix B) to the bivariate Gaussian form of the transition strength
density.

The peculiar behavior of k. is a result of the behavior of the bivariate correlation
coefficient ¢ in the original (E;, E r) variables. It is seen from Eq. (4.60) that £ — 1
as m — oo (with k/m — 0 and t/m — 0). This implies that as m increases, the
strength density will become narrower. The value ¢ = 1 is unphysical as this implies
H and ¢ commute. In practice, { = 0.6-0.8 and it will not be very close to 1. Note
that ¢ = 0 implies that the strengths are constant, i.e. the system reduces to a GOE
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representation. An expansion for the strengths that starts from the GOE result can
be obtained by expanding the delta functions in Eq. (4.58) in terms of polynomials
defined by the H eigenvalue density. Given the eigenvalue density p(E) and the
corresponding orthonormal polynomials P, (E), we have [28]

S(H — E)=p(E) Y _ Pu(H)Pu(E). (4.75)
"

Given the moments of o (E), we can write the polynomials P, (E). As odd moments
vanish for EGOE, the lowest four polynomials, in terms of standardized variables
X, are

2 3
xc—1 X7 — [l4Xx
Py(x) =1, Pi(x)=x, Py(x) = T P3(x) = ———.
Ha = V16 — 15

(4.76)
Substituting in Eq. (4.58) the delta function expansion given by Eq. (4.75), we obtain
[29]

\(m g, E¢10|m; E;) |2 =Y (O P (HYO P (H))" P, (Ep) Pl (E:). (477)
v

For simplicity we assume that m; = m y = m. Now, using the results for u ,, given
before one can write down formulas using BCA for g,,, = [otoym1-Yof P, (H)x
OP,(H))™, u+ v <6. Then,

2
=1 = =72 1_2 19) L
goo =1, g1 =2¢, 82 =¢ + 3 )|

2m? m
k2t 1
=31-3—+0(—= )|
i)

All other g;, =0 or at least 0(#). For example,

 KBi@k—1) o 1 479
g24—g42—W+ i B (4.79)

Generalizing the results in Eq. (4.78) we have in the dilute limit

(4.78)

[(676)" )67 Pu(HYO Py D)™ = 8,0, (0)"

= pivio(Ei, Ef) = p1(E)pa(Ef) Y ()" Pu(Ef) Pu(Ey)
n=0

= ppiv—9,0(Ei, E¢). (4.80)

For EGOE the eigenvalue densities are Gaussians and hence the polynomi-
als are Hermite polynomials. Then the sum over the polynomials gives exactly
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Priv—=:0 (E;, E ¢) with correlation coefficient ¢. Therefore the polynomial expan-
sion has to be summed to very high orders to recover the bivariate Gaussian form.
This implies that larger the ¢ value, slower will be the convergence of the poly-
nomial expansion for transition strengths. For EGOE, the correlation coefficient
¢ = ('Z)_1 (") and this will be closer to unity. Therefore, expansions for transi-
tion strength densities starting with a bivariate Gaussian form will be appropriate.
In practice, it is important to employ the bivariate Edgeworth expansion given by
Eq. (B.15) incorporating kg, r + s = 3, 4 corrections.

4.5 Strength Sums and Expectation Values: Ratio of Gaussians

Given a operator ¢ acting on an eigenstate with energy E;, the transition strength
sum, sum of the strengths going to all states with energies E ¢, is ZEf [(E ¢l O|Ej)|?
and this is nothing but the expectation value (07 0)Ei = (E;|0" O|E;). However,
taking degeneracies into account, one has to deal with strength sum or expectation
value densities. Given a positive definite operator K = &7 &, the expectation density
Ik (E) = I 4+ »(E) and its normalized version pg (E) are

IR (E) = (m, E|K|m, E)I" (E) = (K)" " I"(E)
= (Ko(H - E))";

(K8(H — E)™
(K)™

(4.81)
ok (E) =

Clearly, expectation value will be the ratio of expectation value density and state
density. More importantly, strength sum density [for this K = &7¢ in Eq. (4.81)]
will be a marginal density of the bivariate strength density. For EGOE(k), as the
bivariate strength density is a bivariate Gaussian, the strength sum density will be a
Gaussian and strength sum will be a ratio of Gaussians [27],

(010 = 1510 860k [0y B _ i pnPrio® g
1"(E) 12(E) p(E)
Moments of the strength sum density are
. (oToHPY"
My(O ﬁ) = oo (4.83)

Using the moments to fourth order it is possible to add Edgeworth corrections to the
Gaussian densities in Eq. (4.82). With & = a;, Eq. (4.82) gives expectation values
of the number operator 7; or the occupancies of the sp states |i). Similarly & is
GT operator gives GT strength sums [30] in nuclei and dipole operator gives dipole
strength sums in atoms [31].
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4.6 Level Fluctuations

In this section, we will briefly discuss the various attempts made in literature to
derive the two-point correlation function in energy levels for EGOE(k) and similarly
for EGUEC(k).

French [3, 6] has conjectured in early 70’s, as already stated in Sect. 4.3, that
the level and strength fluctuations for EGOE(k) follow GOE. This inference came
from many numerical examples (with unfolding of each member of the ensemble
with Edgeworth corrected Gaussian defined by the moments generated by individ-
ual members, i.e. using spectral unfolding rather than ensemble unfolding) both
from EGOE(2) and random two-body interactions in nuclear shell model. These
showed that the NNSD is close to Wigner form, A3(7) fits Dyson-Mehta formula
and strength fluctuations follow P-T law. See for example Figs. 2.2, 2.4, 5.3 and
[6, 7]. However, the two-point correlation function could not be derived as the BCA
fails here.

In 1984, Verbaarschot and Zirnbauer [32] used the replica trick, developed in sta-
tistical mechanics for the study of spin glasses and Anderson localization, to derive
the two-point function for EGOE(k). However their attempted was not successful.
Later in 2000, Weidenmiiller’s group made another attempt [19, 20]. They have used
two extreme models, one called EGE,,;, (k) where all the k-particle matrix elements
are assumed to be same. Thus it will have only one independent variable. The other
ensemble is called EGE,,,, (k) where all matrix elements, in the m particle space
H matrix, allowed by symmetries are assumed to be independent Gaussian random
variable and the rest are put to zero. Clearly EGE,,;, (k) represents an integrable
system and therefore follows Poisson. Similarly, it was shown explicitly using the
SUSY method that EGE,,,, (k) follows GOE. Then, using the sparsity of EGOE(k)
ensemble it is argued that EGOE(k) fluctuations should be in between Poisson and
GOE. However, explicit form of the two-point correlation function could not be de-
rived [25, 26]. More recently Papenbrock et al. [33], made another attempt to estab-
lish the nature of fluctuations generated by EGOE(k). They have, motivated by the
analogy to metal-insulator transition (MIT) and a special power-law random band
matrix (PLRBM) that simulates the critical statistic at the MIT, constructed a ran-
dom matrix ensemble called scaffolding ensemble (ScE) having properties: (i) SCE
is more sparse than EGOE(k) ensemble; (ii) ScE spectral fluctuations are those of
the critical ensemble. Using arguments based on a combination of analytical results,
numerical examples and application of a criterion due to Levitov [34], it is argued
that EGOE(k) H matrices (with k > 2) lie on the delocalized side of the MIT and is
therefore chaotic or equivalently EGOE(k) fluctuations follow GOE.

It is important and also of interest to understand ergodicity and universality of
embedded ensembles. Width of the fluctuations in energy centroids and spectral
variances, discussed in detail in Chaps. 11 and 12, clearly indicate that in the dilute
limit (for boson systems in the dense limit) EE will be ergodic. However there is not
yet an explicit analytical derivation of the result that EE are ergodic. Larger variety
of EE described in Chaps. 5-11 and 13 also show that EE have universality—their
results apply to a variety of physical systems. Finally, there are some attempts to
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study fluctuations in energy levels near the ground state in EE. For example, Bohi-
gas and Flores [35] compared the properties of the low-lying part of the spectrum
generated by random interactions in shell model (called TBRE—see Chap. 13) and
showed that the widths of the positions of individual eigenvalues were much larger
for the TBRE than for the GOE. Cota et al. [36, 37] analyzed NNSD and obtained
for the Brody parameter the value ~0.8. More recent results by Flores et al. [38]
show that the semi-Poisson distribution gives a better fit than the Brody distribution,
if spectral unfolding is used.

4.7 Summary

In summary, EGOE(k) [similarly EGUE(k) discussed in Chap. 11] generates for
m > k Gaussian form for state densities with y» — —k2/m and this is established
using BCA. In fact, as m increases from m = k, state densities exhibit semi-circle
to Gaussian transition with m = 2k being the transition point. The semi-circle form
for m < 2k has been proved using SUSY method and the result beyond this follows
from the BCA method. Thus, the one-point function for EGOE(k) differs from that
of GOE. Secondly, using BCA it is established that the smoothed transition strength
densities will take close to a bivariate Gaussian form. Then smoothed transition
strength sums, being marginal densities divided by the state density, will be ratio
of two Gaussians. Thirdly, EGOE(k) exhibits average-fluctuation separation (as m
increases) and also non-zero cross correlations between spectra with different par-
ticle numbers (Chap. 12 gives details). Finally, it is seen (from transition strengths
and level fluctuations with both being essentially two-point in nature) that there are
important differences between GOE and EGOE in the two-point functions.
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Chapter 5
Random Two-Body Interactions in Presence

of Mean-Field: EGOE(1 + 2)

5.1 EGOE(1 + 2): Definition and Construction

Hamiltonian for realistic systems such as nuclei and atoms consists of a mean-field
one-body (defined by a finite set of single particle states) plus a complexity gener-
ating two-body interaction. Then, the appropriate random matrix ensemble, studied
first by Flambaum et al. [1], is EGOE(1 + 2) defined by the ensemble of H opera-
tors

{Hy=h(1) +1{V (2}, (5.1)

where { } denotes an ensemble. The mean-field one-body Hamiltonian ﬁ(l) =
> ;&ini is a fixed one-body operator defined by the sp energies &; with average
spacing A (note that n; is the number operator for the sp state |v;)). In general one
can choose ¢;’s to form an ensemble. The {\7(2)} ensemble in two-particle spaces
is a GOE(1) and A is the strength of the two-body interaction. Thus, EGOE(1 + 2)
is defined by the three parameters (m, N, 1) and without loss of generality we put
A =1 so that A is in units of A. From now on ‘hat’over H, h and V is dropped when
there is no confusion. Construction of EGOE(1 + 2) in the occupation number basis
defined by |vivs - - vy,,) follows easily from Eq. (4.3). It should be noted that /(1)
contributes only to the diagonal matrix elements and for a given |viv; - --vy,), the
h(1) contribution is simply ) ;- ¢,,. Before proceeding further let us point out that
many different choices for the sp energies have been adopted in literature. For ex-
ample, EGOE(1 + 2) with (1) a fixed Hamiltonian (usually generating a uniform
sp spectrum) has been used by Flambaum and Izrailev [1] and Kota and collabora-
tors [2]. Similarly, Alhassid et al. [3, 4] used sp energies drawn from the eigenval-
ues around the center of the semicircle density of a GOE (or a GUE). Alternatively,
Jacquod et al. [5, 6] considered sp energies to be random such that &; = A+ §; where
§; are uniform random variables. At the outset, it should be clear that EGOE(1 + 2)
reduces to EGOE(2) as A — oo and it is seen ahead that in practice A need not be
very large for the approach to EGOE(2). In addition, for EGOE(1 + 2) also, just as
with EGOE(2), the embedding is generated by U (N).

V.K.B. Kota, Embedded Random Matrix Ensembles in Quantum Physics, 101
Lecture Notes in Physics 884, DOI 10.1007/978-3-319-04567-2_5,
© Springer International Publishing Switzerland 2014
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Before discussing some of the important properties of EGOE(1 + 2), we will
digress and consider tensorial decomposition of the Hamiltonian and propagation
of energy centroids and spectral variances. These will play important role in the
results presented ahead in this chapter and in the other chapters to follow.

5.2 Unitary Decomposition and Trace Propagation

5.2.1 Unitary or U (N) Decomposition of the Hamiltonian
Operator

General references here are [2, 7-12]. Let us consider a system of m spinless
fermions in N sp states with a (1 4 2)-body Hamiltonian H = k(1) 4+ V (2) where
h(l) = Zi g;n; and V(2) is defined by the two-body matrix elements V;ji; =
(kl|V(2)]ij). The embedding U (N) algebra is generated by the N 2 number of oper-

ators a;'a ;- Similarly the corresponding SU (V) algebra is generated by the N 21

independent operators a;f aj — %[Zk a,iak]&-, ;- With respect to the U(N) group,

tensorial or unitary decomposition of H can be obtained as follows. Firstly the ir-
reducible representations (irreps) of U (N) are denoted, in Young tableaux notation,
by {A1, A2, ..., Ax} where the X; are positive integers with A > Ay > --- > Ay > 0.
In the Young tableaux picture of the irrep, one has A; boxes in the first row,
A2 boxes in the second row and so on with Ay boxes in the Nth row; Fig. 5.1
shows several examples. Given a U (N) irrep, the corresponding SU (N) irrep is
{A1 — AN, A2 — AN, ...,AN—1 — AN}. A one body operator contains terms of the
type a;a j- The alT being a creation operator for a fermion in the ith sp state, it will
transform as the U (N) irrep {1}; note that here A = A3 =--- = Ay = 0. Similarly,
aj being a hole creation operator it will transform as (1¥=1}. With these, clearly
h(1) will transform as the Kronecker product {1} x {1¥=1}. This product can be
reduced to a direct sum (@) of the U(N) irreps {1V} @ {21Y2} or equivalently
SU(N) irreps {0} @ {21¥~2}. The first part {1V} or {0} is a scalar with respect to
U (N). From now on we will not make a distinction between U(N) and SU (N)
unless specifically needed. As the number operator n with eigenvalue m is the only
scalar available, this piece, called v = 0 part, will be proportional to 7. Thus, the
second part {21V=2} is the irreducible one-body part or the v = 1 part of A(1).
Therefore we have, with respect to SU (N)

h(1) = RO 4 p 2172 pv=0 4 pr=1, (5.2)

Proceeding to a two-body operator V (2), it is a sum of the pieces of the form

a;f aTakal. As aiT a; creates a two fermion state, it will transform as {12}. Similarly,

J
the two hole creation operator axa; transforms as {1V ~2}. Therefore V (2) will trans-
form as the Kronecker product {12} x {1¥~2} and its reduction gives,

V()= VO 4y p N =0 gt =2 (53



5.2 Unitary Decomposition and Trace Propagation

103

U) YOUNG TABLEAUX {f}, fizfiz -2 fp20
@ 1. (iii)
- @ [T
153,29 Ir)= 16
symmetric irrep
general irrep
© Y e [ (/1= 1
= M rows o cobamant |1 l antisvmmetric
w2t g [
§3a410 | }njuﬁart irrep
) | 1
T [ Ve
13
T
s 7= 1654
| i M i ity / wat, U
R i
Qs r :: () B8 for a eveation operatar,
rows | | I then
i 1 {1 s for the corvesponding
- B - ‘:l.'l annihilation operator
(a) === ErR
definition of {1} irrep, given the irrep [}
SUN) SUN)
o g - [
N-1 = N2 =
{n ‘ (1% |
) 1IN}
{11}
| T
H Im r
I
N @ N2 N @ N>‘2 1 ® N-ci 1
{1} 2182y (1N} {2172} {22184
={0} ={0}
v=0 v=1 v=0 v=1 v=2
(b) One-body Operators (©) Two-body Operators

Fig. 5.1 (a) Young tableaux representation of the irreps of U (§2) and shown are: (i) a general
irrep {f}; (if) symmetric irrep {m}; (iii) antisymmetric irrep {1”}; (iv) conjugate irrep { f } that
corresponds to a given { f}; (v) irrep {f} that corresponds to a given { f}. Shaded part in (v) is the
irrep { £} and the remaining Young tableaux read bottom to top is {f}. Note the importance of £2
in defining { £} and this is used in Chap. 11 ahead. (b) Young tableaux for various tensor parts of a
one-body operators with respect to SU (N). (¢) Same as (b) but for two-body operators. See [9, 13]
for details regarding (b) and (c) (Color figure online)
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Thus, V(2) will have a scalar (v = 0) part with respect to U(N) and obviously this
will be proportional to (;) Similarly there will be an effective one-body (v = 1) part
(Hartree-Fock like) and an irreducible two-body (v = 2) part. Given the sp energies
¢; and the two-particle matrix elements V;jy, it is easy to identify the v = 0 parts of

h(1) and V(2),

i=1 (5.4)
—o (7 N\ !
== Ve vo=(, ZWW
i<j
Subtraction of £=0 from & gives h=1
R='= el el =& —F. (5.5)
i

The VV=! part, as it is derived from a two-body Hamiltonian, should be of the form
(an +b)>_ ¢, jaiT aj. Also, as this operator has to vanish in zero and one particle
spaces, we have b = —a. In addition, the ¢ matrix should be traceless (as v = 0 part
of V is removed). Choosing a = 1/(N — 2) and applying contraction of one index
in Viju gives [2, 9],

-, n—1 _
V=l = N2 ZCi,ja;aj; Si,j= [Z Vkikj] - [(N) ' Vrm]&',j- (5.6)
i,j k r,s

Now, the V;j; matrix elements defining VV=2 follow from simple subtraction and
this gives,

=2 _ =0 =1 =2.
A A A L = Vi
Vl;;zzvljlj _VO_(N_2)71(§1,1+§171)7 (5 7)
Vi = Vi — (N =27 for j #K, |

Vljzz = Vijx for all other cases.

Figures 5.1b and ¢ show the SU(N) tensorial decomposition of one and two-body
operators in Young tableaux notation.
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5.2.2 Propagation Equations for Energy Centroids and Spectral
Variances

One very important property of the U (N) decomposition is that the various v parts
of H will be orthogonal with respect to m-particle space averages,

(2" = 3 ([T (5.8)

v=0,1,2

This result follows from the facts: (i) for any m-particle average of an operator only
the scalar part with respect to U (N) will contribute; (ii) Kronecker product of two
operators with unitary ranks v and v’ will give a scalar (v = 0) term only if v =V,
Therefore, it is possible to define a U (N) geometry with norms for an operator &
defined by

161, = {([6 — 6"=°T)"}'"2. (5.9)

Thus, the square of the norm of & will be the sum of squares of the norms of its
various v parts (with ¢V=0 dropped).

The m-particle space averages follow from the simple rule that the average of a
k-body operator will be a polynomial in m of order k. Then the propagation equation
for the m-particle energy centroids is given by,

Ec(m)=(H)" =(H"=" = (h(D))" +(V(2))" = me + (";) Vo.  (5.10)
Similarly, the spectral variances
o(m) = (H)" — [Ecm)]” = ([H"='T)" + {["=T)" D)

also propagate simply. Propagation equations for the v = 1 and v = 2 parts are,

v:12m_m(N—m) e m—l_‘2
(o ]>-Wm¢3;;#@4+ﬁ;§w}, .
_mm — DN —m)(N —m — 1) '

=Py = M U D2y,

For later discussion it is useful to consider ensemble averaged spectral variances
generated by V (2). For these first we need ([V"]2)2. We have easily, with variance
of the two-particle V matrix elements being unity (diagonal matrix elements vari-
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ance is 2),

()

v=1 2\2 _ 2 w2
<[V ] ) - N(N—l)(N—Z)Zgi’j’

Y (5.13)
v =(5)+1

(Vo= = {v2f = {[v>="T) —{[v>='T)".

The only unknown is now Za and it is evaluated as
ij
I - 1 5 2
2 _ 2

D6 =2 Vi~ ﬁ(Z Vijij)

i,j i,jk i,j
=[NN-D(N-=1D+NWN-D]-4N -1
= (N — (N —2)(N +2). (5.14)

Combining Eqs. (5.13) and (5.14) we obtain,

_ (N=3)(N’+N+2)

[v=p7 =20

(5.15)

5.3 Chaos Markers Generated by EGOE(1 + 2)

Most significant aspect of EGOE(1 + 2) is that as A changes, in terms of state den-
sity, level fluctuations, strength functions, entropy and occupancies, the ensemble
admits three chaos markers. We will turn to this now.

Firstly, the state densities p (E) take Gaussian form, for large enough m, for all A
values. This follows from the fact that, as discussed in detail in the previous section,
EGOE(2) gives in general Gaussian state densities and also in general the A (1)’s
produce Gaussian densities. The later follows easily from the result that m-fermion
state density will be essentially a m-fold convolution of the single particle density
generated by i (1). Except for singular 2(1)’s, as discussed for example in [12], this
leads to Gaussian form for large enough m. It should be added that the fluctuations in
o (E) will be large for H = h(1) but we will not discuss this further here. Figure 5.2
shows an example for the Gaussian densities generated by EGOE(1 + 2).
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Fig. 5.2 Typical examples for the eigenvalue density given by various embedded ensembles.
(a) EGOE(1 + 2) ensemble for m = 6 and N = 12 system with interaction strength A = 0.1 in
Eq. (5.1). (b) EGOE(1 + 2)-s ensemble for m =6, £2 =8 (N = 16) and S =0 and 1 systems
with Xo =11 = 0.1 in Eq. (6.1). (¢) BEGOE(1 + 2) ensemble for m = 10 and N =5 system with
A =0.03in Eq. (9.5). (d) BEGOE(1 +2)-F ensemble for m = 10, 2 =4 and F =2 and 5 systems
with Ag = A1 = A = 0.05 in Eq. (10.3). In all the examples used are 500 member ensembles and
the sp energies are takenas e =i+ 1/i;i =1,2,..., N for EGOE(1 4 2) and BEGOE(1 +2) and
i=1,2,...,8 for EGOE(1 4 2)-s and BEGOE(1 + 2)-F ensembles. Shown in the figure are the
dimensions and the values of ensemble averaged y»; ensemble averaged y; ~ 0 in all the exam-
ples. See Chaps. 6, 9 and 10 for details regarding the last three ensembles. All the four ensembles
generate Gaussian densities and the ED representation given by Eq. (B.7) is excellent. Note that
(E — ¢)/o is standardized variable

5.3.1 Chaos Marker ).

With A increasing from zero value, there is a chaos marker A, such that for A > A,
the level fluctuations follow GOE, i.e. A, marks the transition in the nearest-
neighbor spacing distribution from Poisson to Wigner form. This transition occurs
when the interaction strength A is of the order of the spacing A, between the states
that are directly coupled by the two-body interaction. This definition came out of nu-
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clear structure calculations by Aberg [14]. However it was proposed independently
much later by Jacquod and Shepelyansky [5] in analyzing EGOE(1 + 2). Therefore
from now we refer to this as AJS criterion. Given a typical many particle configu-
ration, the action of V (2) will change the occupancy at two places or one place or
none. Therefore, given a m particle configuration, the number K of states directly
coupled by V(2) is

dilute—limit

K=1+m(N—m)+%m(m—1)(N—m)(N—m—1) S mEN? /4. (5.16)

Similarly, action of V' (2) on a configuration changes the energy of the configuration
by A, and this spreads over the K states directly coupled by V (2). The value of
A, can be estimated using the /(1) spectrum. The energy of the lowest two particle
state is €1 + &2 ~ A. Similarly the highest two particle state energy is 2N — 3) A.
Therefore A, ~ 2N A. Then, for the Poisson to Wigner transition chaos marker, AJS
gives [5]

Ae=Ac/K oc1/m?N. (5.17)

In practice, to determine A, from NNSD calculated as a function of A, we need a
criterion for defining the onset of GOE NNSD. There are several recipes for this
[5, 15, 16]. For example, in [16], 02(0 : 1) vs A is calculated and A, is determined
using the condition, following the discussion in Sect. 3.2,

a2(0: A.) = 0.37. (5.18)

Figure 5.3 gives an example for the Poisson to GOE transition in NNSD generated
by EGOE(1 + 2). As the sp energies used are ¢; =i + 1/i, it is easy to see that
in the A ~ 0 limit, majority of many-body eigenvalues approach a perturbed picket-
fence spectrum. Away from this, the spectrum is not picket-fence but deviates from
Poisson as can be seen from Fig. 5.3. However, if we had used sp energies drawn
from the center of a GOE or from the eigenvalues of an irregular system, the fluc-
tuations will be generically Poisson for A ~ 0. Thus, strictly speaking, the results in
Fig. 5.3 show transition from Poisson like to GOE and generically this corresponds
to Poisson to GOE transition. This aspect is also used in Chaps. 6, 9 and 10.

5.3.2 Chaos Marker A

As A increases further from X., the strength functions change from Breit-Wigner
(BW) [18] to Gaussian form and the transition point is denoted by A . Note that the
strength functions Fy(E) are defined by Eq. (2.81) and here k denotes a m-fermion
mean-field basis state. Similarly, Appendix D gives the standard model derivation
of the BW form for strength functions. Now, the BW to Gaussian chaos marker A g
can be understood as follows. Firstly there are two scales in EGOE(1 + 2) with
the first one being A, and the other being the m-particle level spacing A,,. As the
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Fig. 5.3 Nearest neighbor spacing distribution P(S) vs S and Dyson-Mehta A3(L) statistic for
0 < L <40 for various values of the interaction strength A in EGOE(1 + 2). For P(S), histograms
are EGOE(1 + 2) results, dashed curves are Poisson and continuous curves correspond to Wigner
distribution. For A3(L), filled circles are EGOE(1 + 2) results, dashed curves are Poisson and
continuous curves are for GOE. Results are shown for six and seven particle examples with 20 and
1 member respectively. Figure is from [17]
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m-particle spectrum span, estimated using 4 (1) spectrum, B,, =m(N —m) ~mN,

we have Ay, =mN/dy(N,m). Now the Fermi golden rules gives the spreading

width to be I" oc A2/ A. ~ m?>NA? [18]. Then the participation ratio £ o< I'/A,, =

22m df(N,m).Inthe BW domain I" < By, /fo, where fo > 1 and & > 1. This gives
1 1 :

W L AR < Tiom [19,20]. Asd (N, m) is usually large, the BW form sets

in fast an

AF o 1//m. (5.19)

The A, < A < Ap region is called the BW domain, with strength functions close to
BW form and fluctuations following GOE. Similarly, the A > A region is called
the Gaussian domain with strength functions close to Gaussian form. In fact the
BW form starts in a region below A, [there is a A such that below A¢ the strength
functions are close to §-function form and for A > A there is onset of BW form but
the fluctuations here will be close to Poisson for A < A.]. The BW to Gaussian tran-
sition was first recognized by Frazier et al. in 2*Mg shell-model results [21]. Simi-
larly, first example for BW to Gaussian transition in atoms was given in [22]. More
importantly, these were shown to be a feature of EGOE(1 + 2), for the first time,
by Kota and Sahu [17]. Figure 5.4 shows an example for the BW to Gaussian tran-
sition in strength functions. With the basis state energies defined as Ey = (k|H |k),
in the calculations E and Ej are zero centered for each member and scaled by
the spectrum (E’s) width o so that Ek = (Ex —¢)/o and E = (E —¢)/o. Then,
th results in the figure are for the k states with Ex =0+ A. The value of A is
chosen to be 0.025 for A < 0.1 and beyond this A = 0.1 for the results in the fig-
ure.

An important aspect is that in the Gaussian regime and in a limited manner in
BW to Gaussian regime, it is possible to derive analytical formulas for ensemble
averaged NPC and sinfo for EGOE(]1 + 2) wavefunctions expanded in the mean-
field [A2(1)] basis. It is also possible to derive formulas for occupancies and en-
tropy defined by occupancies. First we will give the results for: (i) NPC and S7/°;
(i1) occupancies. Next, we will use these results in the discussion of a third chaos
marker A;.

5.3.3 NPC and S™° in EGOE(1 + 2)

Given the mean-field basis states |k) defined by energies E; = (k|H |k), one can
assume that Ej are generated by a Hamiltonian Hy. Taking degeneracies of E and
E} energies into account we have,

pviv(E, Ex) = (8(H — E)3(Hy — Ek)>
=/ Yl

ack,peE

= (1/a)|CE [*[dp™ (E)][dp™ (Ex)] (5.20)
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Fig. 5.4 Strength functions for EGOE(1 + 2) for various values of the interaction strength A: (i) for
a system of 6 fermions in 12 single particle states with 25 members; (ii) for a system of 7 fermions
in 14 single particle states with one member. In the figure, the histograms are EGOE(1 + 2) results
and continuous curves are BW fit. For the 6 fermions case, the dotted curves are Gaussians for
A <0.15 and Edgeworth corrected Gaussians (ED) for A > 0.15. Similarly for the 7 fermions case,
the dotted curves are Gaussians for A < 0.1 and Edgeworth corrected Gaussians (ED) for A > 0.1.
Figure is from [17]

= Fu(E) = ppiv(E, Ex)/p" (Ey),

|CEI = pin(E. Ex) [[dp" (E)p™ (Ep)].

In Eq. (5.20), |C ,f |2 is the average of |C ,f |2 over all the degenerate states and d =
dy (N, m). Let us now examine the structure of Hy and pp;y (E, Ey). Firstly it should
be noted that the two-body interaction V (2) can be decomposed, just as the U (N)
decomposition discussed in Sect. 5.2.1, into three parts V(2) = VIO 4 vlll 4y
so that h(1) + VI generates the E; energies (diagonal matrix elements of H in
the m-particle mean-field basis states). As given Sect. 5.2.1, V% decomposes into
a scalar part VI0L0 an effective one-body part VI and an irreducible 2-body
part V02 Adding V90 1 V0T to j(1) gives an effective one-body part k of
H, h =h(1) + V0.0 4 yIOLT The important point now being that, with respect
to the U (N) norm, the size of V192 is usually very small compared to the size
of h in the m-particle spaces and similarly the norm of V!l is small compared
to the norm of V. With this, H = h + V and then the Hj is nothing but k. The
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piece V generates the widths and other shape parameters of Fy(E). It should be
added that With respect to the U(N) norm h and V are orthogonal and therefore
a,%, (m) = % 2(m) + (TV (m). For EGOE(1 + 2), it is well known that the widths of
Fi(E) are in general constant (this is seen in many numerical calculations and there
is some analytical understanding as discussed in Chaps. 11, 12 and 14). Then, the
average variance of Fy(E)’s is given simply by

ot=op =@ ") |l HIB)
a#p

where o and B are the indices for the m-particle mean-field basis state. In the
following EGOE(1 + 2) discussion we assume that & is (1) and V is V(2), i.e.
H=h+L1V = h(1)+1V(2).

In the chaotic domain with A > Ar we have: (i) Ey are generated by Hy = h(1),
therefore the variance of pf (Ey) is a,%; (i1) widths of the strength functions are
constant and they are generated by V(2) with the average variance crkz = 0‘2,;
(iii) Fr(E)’s are Gaussian in form; (iv) Fx(E) is a conditional density of the bi-
variate Gaussian pp;,.« (E, Ex). The correlation coefficient ¢ of pp;.« (E, Ey) is
given by,

2
o _ O (m)

(H—ep)(Hy —ep))" (1 B ) _
oé(m) op(m)’

{(m) = =
JUCH — )2y (H — )2y

(5.21)

Note that the centroids of the E and Ej energies are both given by ey = (H). Sim-
ilarly, {2 is nothing but the variance of Ej’s (the centroids of Fy(E)) normalized by
the state density variance. The pp;,.¢ (E, Ex), which takes into account the fluctua-
tions in the centroids of Fy(E) and assumes that the variances are constant, is used
to derive formulas for & (E) and localization length £5 (E) in the wavefunctions.
Note that Eq. (2.78) gives the definitions for & (E) and £5(E). We will also give
the results that take into account variance fluctuations.

In terms of the locally renormalized amplitudes ‘KkE =C ,f /A IC kE |2 where
the bar denotes ensemble average with respect to EGOE(1 + 2), ), |C,f|4 =

S ICEIMICE )2, Now,
= £ 4 EGOE(142) x| o714 /| 7122
YT e (D)
k k
= 33 (IcfPy
k

(3/d) / E [Pvivg (E, Ex)]?
H 2 Hy,

lpy (E)] Po* (Ex)
(3/d)

= _ Erp,  (Ex) | Frg(E)]". 5.22
[pg<E)]2/ oy (E) [Feg (B, (5.22)
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Then, the formula for NPC or the ensemble averaged & (E) is [23],

2
§2(E) = &GoEy/ 1 —§4exp—{$§2 Ez}; éGoE =d/3. (5.23)

Note that E = (E — eg)/og. In the first step in Eq. (5.22) the fact that EGOE
exhibits average fluctuations separation (see Chap. 4) with little communication be-
tween the two is used. This allows one to carry out |(€kE |* ensemble average inde-
pendent of the other smoothed (average) term. In the second line the Porter-Thomas

form of local strength fluctuations is used and then |‘5kE |4 =3, a GOE result. In
the third step the result in Eq. (5.20) is used. Then, the Gaussian forms, valid in
the chaotic domain (A > A, ), of all the densities for EGOE(1 + 2) give the final
formula. As seen from Eq. (5.23), NPC for EGOE(1 + 2) is entirely determined
by the correlation coefficient ¢. In order to estimate ¢ we will use the last equal-
ity in Eq. (5.21). In addition we will consider {H} = ah(1) + A{V (2)}. Neglect-
ing the contributions of V (2) to o3 and assuming a uniform sp spectrum, one gets
o (m) ~ (mN?/12)a?. Similarly o ~ () (5)A2. Here, trace propagation equa-
tions in Eq. (5.12) are used. Therefore, {2 =[1+ 3m()y/oc)2]_1 and this expression
gives 0.51 and 0.76 for the @ = 0.5 and 1 cases in Fig. 5.5. They compare well with
the exact numbers 0.59 and 0.82 respectively. However this estimate fails in the
a — 0 and in this limit, the & has to be replaced by V%], Then the Ej energies are
a sum of ("21) zero centered Gaussian variables each with variance A2. This together

with the 0"2/ expression, gives ¢2 ~ (1;’ )_1 for o ~ 0. The number quoted for the
a =0 case in Fig. 5.5 is close to this estimate.

Correction to NPC due to fluctuations in oy, i.e. for Sak = ok — g # 0,
is obtained by using, for small |80k| the Hermite polynomial expans1on which
gives [24], Frg(E) — Frg(E){1 + c2(8% — 1)} where ¢ = 807 /202 and & =

(E — Ep)/ a_kz. This corrected Fy(E) is used in the integral form with Fy(E) in
Eq. (5.22) by treating (86,?)’5 as random. Keeping only the terms that are quadratic

in (80,(2) in the integral form for NPC gives [23],

(3/d) (602)

2
.‘;: E)= dE P, K(E F{g_ E 2( éa —1 )
2( ) [ A (E)]Z/ kPeg ( k)[ k: ( )] ( k )

d 2 (802) -
— 4 .
_3,/1 {*exp {1 §2E }{1+4|: oZ ] X(E)} ;

1 a0+ =20, (1422 .
(1+¢2)4[E e E+<1—52) O””]

X(E) =

(5.24)
The 802 correction term above is valid only when the fluctuations in the variances
of Fi(E)’s are small (this is in general always true). An estimate for [(802)/0[21]2 is

obtained from Eq. (5.12) by noting that 012, is a sum of K ~ (';') (1;/ ) number of x?2
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EGOE(1+2): N=12,m=6
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Fig. 5.5 (a) NPC and (b) ¢y vs E for a 20 member EGOE(1 + 2) with N = 12, m = 6. Results
are shown, as discussed in the text, for the ensemble {H} = ah(1) + A{V (2)} and the sp energies
defining A (1) are taken as &; =i + 1/i. For the three values (¢ =0, =0.2), (¢ =0.5,1 =0.2)
and (¢ = 1, A = 0.2) the corresponding value for the correlation coefficient ¢ is shown in the figure.
For NPC, Eq. (5.23) and for £y, Eq. (5.25) give the theoretical formulas respectively. The figures
are taken from [23] with permission from American Physical Society

variables and therefore [(§52) /0"2/]2 =2/K as given first in [1]. Then,

(o303 ~20-e) /(%) (5)

For finite N, the correlation coefficient and the variance corrections are small but
non zero and in the large N limit they are zero giving the GOE result. As we add the
mean-field part to the EGOE(2), ¢ increases and at the same time the correction due
to variance fluctuations decreases. Thus the formula Eq. (5.24) with the (80%) term
is important only for small ¢ (this equation was also derived by Kaplan and Papen-
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brock [25] but using some what a different approach). Equation (5.23) is accurate
for reasonably large ¢ (¢ > 0.3). All these results are well tested in Fig. 5.5.

Proceeding exactly as above, expression for £y in wavefunctions is obtained and
the result is [23],

EGOE(1+2)

Ly(E)  — —dek

Privg (E, Er) { Opiv(E, Ex) }
pg (E) p I (Ex) ol (E)

2 272
= /1 —§2exp<%> exp—(g 2E ) (5.25)

Thus 1 (E) or the S™°(E) is determined completely by the correlation coeffi-
cient ¢. Figure 5.5 gives a numerical test of the EGOE(1 + 2) formula given by
Eq. (5.25). By rewriting the integral in Eq. (5.25) in terms of F;(E) and making
small (80%) expansion just as in the case of NPC, gives

[ (& ¢ E? 16D 7
Ly(E) = l—{%:xp(—)exp—( )(1——|: i| Y(E));
2 2 8 02 (526)

H

1
Y(E) = m{@ — )P (B2 —1)" +4¢2(1 - ) B>+ 2¢4).

5.3.3.1 NPC in BW to Gaussian Interpolating Region

In the BW to Gaussian transition regime (i.e. in the A, < A < A region) of
EGOE(1 + 2), there is no analytical method available to solve for Fi(E). How-
ever it is possible to use for example a linear interpolation form [17, 26] Fy(E) =
(1—a)Fr:pw(E)+aF.4(E). Then @ =0 gives BW and o = 1 the Gaussian forms.
However, a non-linear form, a priori better as argued in [22], is to use an extended
t-distribution,

(@B)*" I (a) 1

F. —@ E : . = )
kaw—w(E :a, B) ﬁF(a—%) (E—E0? 1 ap)"

a>1. (5.27)

Here I"(—) are I'-functions and « and B are parameters. Eq. (5.27) gives BW for
« = 1 and Gaussian for @ — oo (this can be easily checked using Stirling’s ap-
proximation). As required, it is normalized to unity for any positive value of the
continuous parameter «. For 2o — 1 an integer, Fi.gw_«(E : @, B) gives the so
called Student’s t-distribution [24], which is well known in statistics. The parameter
« is sensitive to shape changes, while the parameter 8 supplies the energy scale over
which Fi.pw_«(E : a, B) extends. Since we focus on the shape transformations, «
is the significant parameter. It is easy to see that Fj.gw_« (E : «, ) is an even func-
tion of E—E}, so that all of its finite odd cumulants vanish (strictly speaking, the

centroid is Ex only for « > 1). The variance Ukz is

of = B: a>3/2 (5.28)

200 —3
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and this can be used to eliminate the parameter 8. For o < 3/2, it is the spreading
width I" (this is well defined for all « values) that is useful for fixing the 8 value.
There is no simple expression for I" as a function of & and 8. Numerical EGOE(1 +
2) calculations showed that Eq. (5.27) describes quite well Fi(E) as A changes
from A, to Ar and beyond. The fits of Fi(E), constructed for various A values, to
Fr.pw_a(E : «, B) give A vs o (note that oy eliminates the parameter 8). It is seen
that « = 4 gives the chaos marker A = 0.2 for the examples in Fig. 5.4.

Substituting Eq. (5.27) in the last equality in Eq. (5.22), assuming that the pa-
rameters o and 8 to be k independent, using Eq. (5.28) to eliminate 8, simplifying
all the variances to ¢ using Eq. (5.21) and then carrying out the integral for E = 0
gives (for o > 3/2) [22],

£ (E = 0)/&579F

_{ | 2 e 1 UG 3 L, (2a—3)(1—;2)>}‘1
|V Qe —-3) ]—'2(0{—%) /;_2(1_{2) 2’2 ’ 202

(5.29)

where U (— — —) is hyper-geometric-U function [27].

5.3.4 Occupancies and Single Particle Entropy in Gaussian Region

In the Gaussian domain, EGOE(1 + 2) is effectively EGOE(2) and therefore
Eq. (4.82) with & = q;, gives a theory for occupancies except that all the pa-
rameters defining the Gaussians and higher cumulants should be calculated using
EGOE(1 +2) Hamiltonian. Figure 5.6 shows an example. An alternative, often quite
good and easier for analytical treatment, is to consider the linear response of p (E)
under the deformation H — H, = H + an;. Then, it is easily seen that [28]

E o H,
) = —[p" (B tim [ 2

a—0 /) _~ do

dx. (5.30)

Under H — H,, the single particle energy ¢; — ¢; + «. With H represented by
EGOE(1 + 2), H, for o small is also represented by EGOE(1 + 2) and therefore
the shape of p (E) will be unchanged from the Gaussian form under the « defor-
mation. Using this and applying Eq. (5.30) one gets,
~ g EGOE(142) . R

() =" )™+ (i (H = en )" (E — en(m)) fogy(m).  (531)
The linear form given by Eq. (5.31) is close to the numerical results given in Fig. 5.6.
For the present purpose more relevant is to consider entropy defined by occupancies
[called single particle entropy S*7(E)],

SP(E) = —Z{(ﬁi)Eln((ﬁi)E) + (1= () In(1 — (1) F)}. (5.32)

i
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Fig. 5.6 Occupation EGOE(1+2) : (N=12 m—6),H h +A{V}
numbers for a 25 member 924 1.00 g LI B B B I S B
dimensional EGOE(1 + 2) '

ensemble. Note that the sp 0.75

energies used are

& =i+ 1/i.Results are
shown for the lowest 5 single
particle states and for six
values of the interpolating 0.25
parameter A. The estimate
from Eq. (5.18) gives

Ae ~ 0.05 for order-chaos
border in the present

050 {|

EGOE(1 +2) example. Itis & °7° [
clearly seen that once chaos §
sets in, the occupation 3 050
numbers take stable smoothed 8
forms. For A =0.08 and 0.1, 0.25
the EGOE(1 + 2) results are
compared with the EGOE
smoothed form given by
Eq. (4.82) which is a ratio of
Gaussians (smoothed curves 0.75
in the figure and here
Edgeworth corrections are 0.50
added). Figure is taken
from [2] with permission
from Elsevier 0.25
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(E-¢)/o

Let us assume that the sp spectrum is a uniform spectrum with level spacing A.
Then the sum in Eq. (5.32) can be replaced by the integral, to good approximation,

= [---p(e)de =[A]7! [ ---de. Using this and substituting Eq. (5.31) for
(ﬁ,-)E, gives [29], when truncated to E~ term

, 1
exp(S*P (E) — Spbux) = exp —E;ZE?. (5.33)
It is important to note that the correlation coefficient ¢ in Eq. (5.33) is the same
as the one that enters into EGOE(1 4 2) formulas given before for NPC and S/

A numerical test of Eq. (5.33) is shown in Fig. 5.7 and the agreement is good for a
wider range of ¢ values.

5.3.5 Chaos Marker \;

A very important question for isolated finite interacting particle systems is the fol-
lowing [30]: in the chaotic domain will there be a point or a region where ther-
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Fig. 5.7 Thermodynamic entropy exp(S™e" — Sthery "information entropy exp(sinfo — Sgg’E) and

single-particle entropy exp(S*? — Spi.) vs (E — €)/o for EGOE(1 + 2) for three values of A.
The same N = 12 and m = 6 systems as in Fig. 5.6 has been employed in the calculations. The
filled circles are EGOE(1 + 2) results and the continuous curves are the theoretical EGOE(1 + 2)
predictions as given by Eqgs. (5.25), (5.33) and (5.34). Figure is taken from [29] with permission
from American Physical Society

malization occurs, i.e. will there be a region where different definitions of en-
tropy, temperature, specific heat and other thermodynamic variables give the same
results (as valid for infinite systems)? Obviously this has to happen beyond Ar
and this gives the third chaos marker A,. To understand this marker, in the Gaus-
sian domain of EGOE(1 + 2), three different entropies are considered: thermo-
dynamic (§”"), information (S”/°) and single particle (S°7) entropies; note that
(§"ey g = In pH™(E). Trivially, the EGOE(1 4 2) formula for $”¢ is

exp[ (5™, — (8™),..] — exp— % (E?) (5.34)
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and the other two entropies are given by Egs. (5.25) and (5.33). These results are
compared with numerical EGOE(1 + 2) calculations in Fig. 5.7 and they are un-
derstood as follows. With H = h(1) + V(2) (here we consider /(1) with single-
particle level spacing A and V(2) with matrix elements variance A2), there are
two natural basis defined by % and V respectively. Then for thermodynamic con-
siderations to apply, the entropy measures should be independent of the chosen
basis. Firstly, in the dilute limit 2 and V will be orthogonal. The variance of
h in m-particle spaces is ohz(m) = [(mN?)/12]A% = f2>A?. Similarly the vari-
ance of V is o%,(m) ~ [(m*N?)/412* = g?A%. The S™° and $°7 are basically
determined by ¢ and for strength functions expanded in the i(1) basis, {o(A) =
V(f2A2)/(f2A2 + g222). Similarly for strength functions expanded in the V(2)
basis, {oo(A) = /(g242)/(f2A2 + g222). Now the following is clear: when A —
00, o gets close to zero. Similarly when A — 00, ¢ gets close to zero. In both
these situations S™/° takes GOE values and S*” approaches its maximum value. The
condition &o(A;) = {o(X;) gives Ay = |Af/g| and here ;2 = 0.5. Also note that,
with A =1 [22],

~ L a2l

At N ¢ =0.5. (5.35)
With A; defined, it is easily seen that {xo(A) = {0(A3/A), thus there is a dual-
ity in EGOE(1 + 2); duality in EGOE(1 + 2) was first discussed by Jacquod and
Varga [20]. At the duality point A = X;, the entropies are basis independent. Thus
A ~ A, with £2 ~ 0.5 defines the thermodynamic region for interacting particle sys-
tems. In this region, as stated in [31]: the thermodynamic entropy defined via the
global level density or in terms of occupation numbers behaves similar to the infor-
mation entropy. Comparing Fig. 5.7 with the shell-model calculations due to Horoi
et al. [31] for 28Si nucleus and due to Kota and Sahu [29] for the 24Mg nucleus, it is
seen that atomic nuclei in general will be in the thermodynamic regime (i.e. A ~ X;).

5.4 Transition Strengths in EGOE(1 + 2)

5.4.1 Bivariate t-Distribution Interpolating Bivariate Gaussian
and BW Forms

In the Gaussian domain of EGOE(1 +2), just as the strength functions, it is plausible
to argue that the transition strength densities, generated by a transition operator take
bivariate Gaussian form with correlation coefficient ¢ defined as in Sect. 4.4 except
H is now the EGOE(1 + 2) Hamiltonian. However in the BW domain, for A, <
A < Af, a form interpolating bivariate BW and bivariate Gaussian is appropriate.
Then, as argued in [32], it is possible to represent the transition strength density by
the bivariate ¢-distribution with a parameter vy,
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Pviv—t(Ei, Ef; 8i,€f,01,02, ;1)
1

B 2moiopy/1 — 2

x[1+ 1 {(Ei—gi)2_2§<Ei—gi)<Ef—af>
v(1—=2¢2) o1 o1 02

v+2

’ t . .
02

For v; = 1, ppiy—s gives a bivariate Cauchy (i.e. bivariate BW) distribution and as
vy — 00, Ppiy—t Decomes a bivariate Gaussian. Secondly, the marginal distributions
of ppiy—; are easily seen to be univariate z-distributions, with v; degrees of freedom,
independent of ¢ with univariate Cauchy (BW) distribution for v; = 1 and Gaussian
as v; — 00. Thus, as the parameter v (when there is no confusion, we will write v;
as v) changes from 1 to 0o, ppiy—; changes from bivariate BW to bivariate Gaussian.
In Eq. (5.36), ¢; and ¢ are the centroids of the two marginals of pp;y—, and ¢ is
the bivariate correlation coefficient. However, o1 and o7 will approach the marginal
widths o; and oy only in the limit v — o0, i.e. for the bivariate Gaussian. In fact,
the marginal variances are ol.2 = U—Kzalz and 0]% = v—izag for v > 2; For v < 2, the
spreading widths of the marginal densities define o1 and o5. Figure 5.8 shows some
EGOE(1 + 2) examples.

5.4.2 NPC and S™ in Transition Strengths

Given a transition operator ¢ and the corresponding transition strengths |[(E ¢ || E) 12,
the normalized strength %, ensemble averaged (smoothed) normalized strength %
and locally re-normalized strength R are defined by

R(E,Ep) = |(E|0TO\E)} " \Ef101E)|,
Z(E, Ep) = {[E|0TO\E)} ' [(Ef101E)|, (5.37)
R(E,Ep) = {[(Ef101E) )" (Ef101E) .

Here bar denotes average over the EGOE(1 + 2) ensemble. Then the measures NPC
or 52(3) and S™/°*S for transition strengths are

-1
&"(E) = {Z{%Ev Ef>}2} ’
| E; (5.38)
(Smfo:s)E — _Z Z(E, Ef) InZ(E, Ef)~
Ey
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A=0.08

EGOE(1+2)

Transition Strength

A =0.28

Fig. 5.8 Transition strength \(Ef|ﬁ|E,~>|2 vs (E;, Ey) for A = 0.08, 0.2 and 0.28. In the figure
Ej and Ey are standard/i\zed E; and E. In all the figures, the ensemble-averaged strengths in the
window E; 4+ §/2 and Ey 4= §/2 are summed and plotted at (E;, E); § is chosen to be 0.1. The
EGOE(1 +2) system is same as that was used in Fig. 5.6 with N = 12 and m = 6 and the one-body
transition operator &' = agag, For this system, the total strength is 252. As A changes from 0.08 to
0.28, the v value changes from 2.4 to 9 and the bivariate correlation coefficient £ changes from 0.45
to 0.62. Note the change in the scales of the vertical axes in the figures. Figures for various A values
are take from [32] with permission from American Physical Society

Here after 52(2) (E) and §™3(E) correspond to averages over the EGOE(1 + 2)
ensemble in the Gaussian domain. The EGOE formula for Ez(‘v)(E ) is derived by

first writing f;‘z(x)(E) in terms of (1%2) and (%)? using Egs. (5.37) and (5.38). In the

second step used is the fact that there is average-fluctuation separation in transition
strengths (i.e. assuming that the results in Sect. 4.3 extend to transition strengths).
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Then we can evaluate {Ié(E , Ef)}2 separately. To this end the numerically ob-
served result that EGOE fluctuations follow GOE has been applied, i.e. R(E.E 1)

distribution is Porter-Thomas. This gives {ﬁ(E, E f)}2 = 3. Thus we are left with
> g [#(E.Ep)) giving,

_3Z:Ef[|(Ef|ﬁ|E)|2]2

g(s)(E) —1 LA
(76 [(E|67 O|E))2

(5.39)

To proceed further we consider the bivariate transition strength densities
1" (E,Ep)=1"/(Ef)(Ef | €| E)|*I"(E) and they take, for EGOE(1 +2) in
the Gaussian domain, bivariate Gaussian form with normalization ((€F @))™. Writ-
ing the numerator and denominator in Eq. (5.39) in terms of the I’s and replacing
the sums over E s by the integral f(— — —=)I"/(Ef)dE; will lead to the form,

@)

-2
]m_()%{f’g’mf(E’Ef)dEf} f[lmf(Ef)]_l[IZ’mf(E»Ef)]2dEf-

(5.40)

Now replacing IZ’mf (E, Ey) by the EGOE bivariate Gaussian and ™/ (Ey) by
univariate Gaussian and carrying out the integrations in Eq. (5.40) will give the final
result [33],

‘ ds 5CE + A\’
& (E) EG—°>E§{6\/1—42Xexp—(—"C o ) };
G =020y, A=(e2—ep)/oy, E=(E—e)/ol, (5-41)

X =[2-6)21-¢2)]"

Here ¢ and 0% are the centroid and variance of 1™/ (E y) and d is the dimension

of the E ¢ space. Similarly, (e1, &2) and (012, 022) are the centroids and variances of
the marginal densities of the bivariate transition strength density. The formula for
Smfo:s (E) is,

— ~2 _ 2 n o~ Ao
eXp[Sinfots (E)] =0.48dy [&\/@exp M exp _M] .

2 2
(5.42)
The crucial factor that determines the EGOE structure of (NPC)g is the bivariate
correlation coefficient ¢. Also, it is easy to see that there is a close relationship
between NPC and S in wavefunctions and in transition strengths except that the
meaning of the correlation coefficient ¢ is different for these two. For further details
and discussion see [23, 33].
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5.5 Simple Applications of NPC in Transition Strengths

Comparing Eq. (5.41), valid for EGOE(1 + 2) in the A > AF region, with the GOE
result d /3 for NPC (see Sect. 2.3), it is possible to define effective dimension d,yf
so that

£ (E) = dosr (E) /3. (5.43)

Assuming & = 1 and A=0and putting d =dy, Eq. (5.41) gives

o
de (E):j,
T D £, (B)
4 1_§2 72
fe(E)y=/2n(1—-¢ )eXPmE , (5.44)
_ d E?
D(E) =I(F)= -

Now consider the transition parameter A for TRNI in nucleon-nucleon interaction
as discussed in Sect. 3.1.3. Let us denote the TRI part of the Hamiltonian as Hg.
Say, TRNI to TRI ratio in the interaction is  and v? is the square of the size of the
Hpg matrix elements in the neutron resonance region. Then (with the energies of the
resonances ~F),

B 2U2(E)_ Ol20'2
(D(E)Y?  desr(E)D(E))?

(5.45)

With o in MeV and D in eV units, Egs. (5.44) and (5.45) will give

=,/ fé'(E)Al/ZD(E) 1073, (5.46)

In Eq. (5.46) one can assume, though we have used spinless EGOE ensemble, that
all quantities are in J spaces as required for nuclei. Substituting typical values E =
3—-4,¢=0.8—0.9and o ~ 2.25, finally gives the result

a~15x10"3A2DEY*. (5.47)

This compares quite well with Eq. (30) of [34]. Note that in [34], Eq. (5.47) was
derived by using the results of detailed calculations for v for large number of nuclei
in the neutron resonance region.

In another application, we will show that the width of the fluctuations in strength
sums is given by d.ry. Let us denote the strength sum, generated by a transition op-
erator ¢ acting on a state with energy E by My(E) = (E|0TO|E) and the locally
averaged strength sum by My (E). The bar over My(E) and other quantities denote
local average which is equivalent to ensemble averaging. Assuming that the fluctua-
tions in the locally renormalized strengths follow P-T (the locally averaged strengths
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taking EGOE bivariate Gaussian strength density form), it is seen that the transition
matrix elements (E’|C|E) are locally independent and they are zero centered Gaus-
sian variables. The relationship between X2(E), the mean square deviation in the
strength sums (from the averages) normalized by the square of the average strength
sum [Mo(E)]? and NPC or 52(5)(E ) in transition strengths originating from |E) is
derived as follows,

o) =[S0

L

=Y lEloBl |+ X (EloE e oE)?

- E/ - E/;éE//
=2 EloE)* |+ Y [(E|oE) (BB
- E < E'#E"
=Y e |o1B)* - {[(E|01E) Y]+ (Mo(E))’
—
Y2E) 23 pl(ENOIE)PP
(My(E))? (My(E))?
2 ————\ 17" .. (opiv. o (E, EN)?
=2 \(farbmotEEn) | [apttus e on

22
36 (E)  defr(E)

(5.48)

The second step to the third in Eq. (5.48) follows from the independence of the
strengths and the third reduces to the fourth step by adding and subtracting terms
with E' = E”. The fourth step is simplified using the result that for a zero centered
Gaussian variable x one has x4 = 3(x2)2. Note that X2(E) is the mean square de-
viation in the strength sum from the average and in relating it to NPC in transition
strengths, results in Sect. 5.4.2 are used. Also, in Sz(b?ﬁ we have shown explicitly the
transition operator &. The final result in Eq. (5.48) was given first in [28] and its
relation to NPC was pointed out in [2]. The results of Eq. (5.48) are compared with
nuclear shell model results in [2, 35, 36].
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Chapter 6

One Plus Two-Body Random Matrix Ensembles
for Fermions with Spin Degree of Freedom:
EGOE( + 2)-s

First non-trivial but at the same time very important (from the point of view of its
applications) embedded ensemble is the embedded Gaussian orthogonal ensemble
of one plus two-body interactions with spin degree of freedom [EGOE(1 + 2)-s] for
a system of interacting fermions. This ensemble is directly applicable, as spin degree
of freedom is explicitly included, to mesoscopic systems such as quantum dots and
small metallic grains. Spin degree of freedom allows for inclusion of both exchange
interaction and pairing interaction in the Hamiltonian. Secondly EGOE(1 + 2)-s en-
semble exhibits three chaos markers, just as the EGOE(1 + 2) for spinless fermion
systems, with the markers depending on the total m fermion spin S. The spin depen-
dent chaos markers provide a much stronger basis for statistical (nuclear and atomic)
spectroscopy [1]. Also,thermalization in generic isolated quantum systems has ap-
plications in QIS as emphasized in some recent papers [2—6] and with the chaos
markers, EGOE(1 4 2) and EGOE(1 + 2)-s ensembles allow us to study thermaliza-
tion in finite quantum systems [7]. In addition, as recognized recently, entanglement
and strength functions essentially capture the same information about eigenvector
structure and therefore the change in the form (§-function to BW to Gaussian) of
the strength functions in different regimes defined by the chaos markers determines
entanglement properties in multi-qubit systems [8—11]. Hence, EGOE(1 + 2) and
EGOE(1 + 2)-s ensembles will be useful in multi-qubit entanglement studies as
emphasized in [11].

In this chapter we will present some of the general properties of EGOE(1 + 2)-s
and in the next chapter applications are given.

6.1 EGOE(1 + 2)-s: Definition and Construction

Let us begin with a system of m (m > 2) fermions distributed say in £2 num-

ber of single particle orbits each with spin s = % so that the number of sin-

gle particle states N = 2£2. Single particle states are denoted by |i, ms = :I:%)

withi =1,2,..., £2 and similarly two particle antisymmetric stats are denoted by

V.K.B. Kota, Embedded Random Matrix Ensembles in Quantum Physics, 127
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|(ij)s, mg), with s =0 or 1. For one plus two-body Hamiltonians preserving m par-
ticle spin S, the one-body Hamiltonian is ﬁ(l) = Zi:m“_’ o €if; where the orbits
i are doubly degenerate, 71; are number operators and ¢; are single particle energies
[it is in principle possible to consider 71\( 1) with off-diagonal energies &;;]. Simi-
larly the two-body Hamiltonian V (2) is defined by the two-body matrix elements
Vii'kl =4 ((kD)s, mg]| V(2)|(ij)s, my)q With the two-particle spin s = 0, 1 and they are
independent of the m; quantum number; note that for s = 1, only i # j and k #/
matrix elements exist. Thus ?(2) =X ys=0 2) + A ys=1 (2); the sum here is a di-
rect sum. Now, EGOE(2)-s for a given (m, S) system is generated by defining the
two parts of the two-body Hamiltonian to be independent GOE’s [one for ys=0 2)
and other for V* =1(2)] in the 2-particle spaces and then propagating the V(2) en-
semble {\7(2)} = )\0{/\/\”0(2)} + A1 {VS =1(2)} to the m-particle spaces with a given
spin S by using the geometry (direct product structure) of the m-particle spaces;
here {} denotes ensemble. Then EGOE(1 + 2)-s is defined by

{H)ecor(42)s = h(1) + 2 [ V@) + M { V=1 @), (6.1)

where {VSZO(Z)} and {\7s =1(2)} in two-particle spaces are GOE(1) and Ao and A,
are the strengths of the s =0 and s = 1 parts of V(Z), respectively. From now on-
wards we drop the “hat” symbol over H, h and V operators when there is no confu-
sion. The mean-field one-body Hamiltonian /(1) in Eq. (6.1) is a fixed one-body op-
erator defined by the single particle energies ¢; with average spacing A [it is possible
to draw the ¢;’s from the eigenvalues of a random ensemble just as in EGOE(1+-2)].
Thus, EGOE(1 + 2)-s is defined by the five parameters (£2,m, S, Lo, A1); without
loss of generality we put A = 1 so that Ap an A; are in units of A. The H matrix
structure in the defining space is shown in Fig. 6.1a.

Starting with Eq. (6.1), matrix for H in m-particle spaces can be constructed
as described ahead. As H preserves S, the m particle matrix will be a direct sum
of matrices in each (m, S) spaces as shown in Fig. 6.1b. It is useful to note that
a formula for the H matrix dimension dy(£2,m,S) in a given (m, S) space, i.e.
number of levels in the (m, S) space with each of them being (25 + 1)-fold de-
generate, with the fermions in £2 number of sp levels is easy to write down. Given
the S, quantum number Mg, for fixed (m, Ms) we have m| = (m 4+ 2My)/2 and
mo = (m —2Ms)/2. Then the (m, M) space dimension 2(2, m, Ms) = (W‘?)(Q)

1/ \my

Now the simple rule d¢(£2,m, S) = 2(£2,m, S) — (82, m, S + 1) gives,

@S+ 22+1 22+1
@ m = <m/2+s+ 1><m/2— S)' @2

They satisfy the sum rule Y ((2S + D)ds(2,m, S) = (Z) For example for m =
2 = 8, the dimensions are 1764, 2352, 720, 63 and 1 for S =0, 1, 2, 3 and 4 re-
spectively. Similarly, for £2 = m = 12, they are 226512, 382239, 196625, 44044,
4214, 143, and 1 for § = 0-6. Often we will drop the suffix ‘ f” in d () when there
is no confusion. It is useful to note that for the EGOE(1 + 2)-s ensemble three
group structures are relevant and they are U(£2) ® SU(2), > 5=0.1 O(N>,5)® and
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Fig. 6.1 (a) Hamiltonian EGOE(1+2)-s : Q=m=8
generating EGOE(1 + 2)-s
ensemble for 8 fermions in

8 sp levels. Shown are the sp
spectrum defining the
mean-filed part /(1) and the
V(2) matrix in two-particle H=
spaces. Note that each sp
level is doubly degenerate.
(b) Decomposition of the m
particle space H matrix into
direct sum of matrices with (a) h(1) V@)
fixed spin S value and there is
a EGOE(1 + 2)-s ensemble in S=0
each (m, S) space
corresponding to each
diagonal block in the figure S=1
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Y s O(Np s)®, m >2.Here Ny, s =df(£2,m,S), the symbol @ stands for direct
sum and O(r) is the orthogonal group in r dimensions. The U (£2) ® SU(2) alge-
bra defines the embedding. The EGOE(2) ensemble has orthogonal invariance with
respect to the ) g_q | O(N2,5)® group acting in two-particle spaces. However it
is not invariant under the ) ¢ O (N, 5)@® group for m > 2. This group is appropri-
ate if GOE representation for fixed-(m, S) H matrices is employed; i.e., there is an
independent GOE for each (m, S) subspace.

In order to construct the many particle Hamiltonian matrix for a given (m, §),
one approach is as follows [12]. Consider the single particle states |i, mg = :t%) and
arrange them in such a way that the first £2 state have mg = % and the remaining
§2 states have mg = —% so that a state |r) = |i =r,mg = %) forr < £2 and |r) =
li=r—2,mg= —%) for r > §2. Now the m-particle configurations m and the
corresponding M values are,

m=(my,my,...,mQ,Ma41,MQ42,...,M202), m,=0 or 1,
o) 20
1 (6.3)
= [Som 3
r=1 r=02+1

Two examples for m for a (£2 = 6, m = 6) system are shown in Fig. 6.2. It
is important to note that the m’s with Mg = 0 will contain states with all §
values for even m and similarly with Mg = % for odd m. Therefore, we con-
struct the m particle Hamiltonian matrix using the basis defined by m’s with
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Mg =0 for even m and Mg = % for odd m. The dimension of this basis space is
2(82,m, Mg"i") =)y dy(£2,m, S). For example, Z(8, 8,0) =4900, Z(8, 6,0) =
3136 and 2(10, 10, 0) = 63404. To proceed further, the (1 + 2)-body Hamiltonian
defined by (¢;, V.ﬁlo’l)’s should be converted into the |i, mg = :I:%) basis. Then &;

13
change to ¢, with the index r defined as above and Vij.flo’l change to V;,;, jm kmp,Imy
where,

_ ys=1
Vit iy = Vim
_ys=I1

Viel jta-11-1=Viju (6.4)

. V(A +6i) 1+ 8u) ys=1 4 ps=0
o lalioy = 2 Vi + Vi)
with all other matrix elements being zero except for the symmetries,
Vim,-,jm ikmpy,lm; = _‘/i'ni,jm j lmy kmj
! ! (6.5)

Vim,-,jmj,kmk,lml = Vkmk,lml,im,-,jmj .

Using (&, V,-m[,jmj,kmuml)’s, construction of the m particle H matrix in the basis
defined by Eq. (6.3) reduces to the problem of EGOE(1 + 2) for spinless fermion
systems and hence Eq. (4.3) will apply. For the S? operator, &; = 3/4 indepen-
dent of i, Vl;lzjo = —3/2 and Vl;l:]l = 1/2 independent of (ij) and all other Vl; Xl
are zero. Using these for the S operator, the m particle matrix with Mg = 0 for
even m (Mg = 1 for odd m) is constructed and diagonalized. This gives a di-
rect sum of unitary matrices and the unitary matrix that corresponds to a given S
is identified by the eigenvalue S(S + 1). Applying the unitary transformation de-
fined by this unitary matrix, the m particle H matrix with Mg = 0 for even m
(Mg = % for odd m) is transformed to the basis with good S values. Alternative
method of construction is to directly construct the H matrix in a good S basis using
angular-momentum algebra [13]. Employing good-Mg basis is equivalent to em-
ploying the algebra U (252) D U(§2) @ U(S2) and the good spin basis corresponds
to U(282) D U($2) @ SU(2). For the construction of EGOE(1 + 2)-s, besides Kota
et al. [12, 14], computer codes were also written by Jaquod [15], Papenbrock [16]
and Alhassid [13] groups.

6.2 Fixed-S Eigenvalue Densities, NPC and Information Entropy

6.2.1 Eigenvalue Densities

Using the EGOE(1 + 2)-s codes, several groups have [12, 14-16], in large num-
ber of examples, numerically constructed the H matrix and by diagonalizing

them obtained the ensemble averaged eigenvalue (level) densities p™S(E) =
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Fig. 6.2 Examples of single Single—particle configurations with M=0
particle configurations with Q Q

Mg =0 fora £2 =6 and \ I

m = 6 system. Note that the T T T l l l

number of sp states N = 12.

In the figure, first £2 number
of sp states correspond to spin

up (ms = 1/2) and the T T T l l l
remaining §2 number of sp
states correspond to spin

down (mg = —1/2) states T T T l l l

(§(H — E))™S. Note that the trace of an operator & over a fixed-(m, S) space
is defined by (O)™S = @28+ 1)7'Y (m, S,a|0|m, S, ) and similarly (m, S)
space average is (0)™S =[(25 + Ddy($2,m, H1! D ouim, S, a|0|m, S, a). From
now onwards, we drop the ‘bar’ over p when there is no confusion. As an ex-
ample, results for £2 = 8 and m = 6 system are shown in Fig. 5.2. In this ex-
ample, Ao = A1 = A = 0.1. Also the sp energies taken to be ¢; =i + 1/i with
i=1,2,..., 8. To construct the eigenvalue density, the centroids E.(m, S) of all
the members of the ensemble are made to be zero and variance o2(m, S) unity
i.e. for each member we change the eigenvalues E to the standardized variables
E= [E — E:.(m, S)]/o(m,S). Note that the parameters E.(m, S) and o2(m, S) de-
pend also on £2. But for convenience, we will drop §2 in E.(m, S) and o(m, S)
throughout. Then, using a bin-size AE =02, histograms for p"5(E) are gener-
ated. The calculated results are compared with both the Gaussian (p«) and Edge-
worth (ED) corrected Gaussian (pgp) with y; and y» corrections. From the re-
sults in Fig. 5.2, it is seen that the agreement between the exact and ED corrected
Gaussians is excellent. It has been well established, as discussed in Chaps. 4 and 5,
that the ensemble averaged eigenvalue density takes Gaussian form in the case of
EGOE(1 + 2). Combining this with the numerical results for the fixed-(m, S) level
densities, it can be concluded that the Gaussian form is generic for the embedded
ensembles extending to those with good quantum numbers. This is further substan-
tiated by the analytical results for the ensemble averaged y»(m, S) for EGOE(2)-s
extracted from [17] (see also [18-20]) and for a general 4 (1) Hamiltonian given
in [14]; they give to lowest order y»(m, S) ~ % + %[1 + 45(’5—;1)] where Cp and
C| are constants.

6.2.2 NPC and S™f°

Basis states with good S used in the previous section for constructing H matrix
are also eigenstates of the mean-field Hamiltonian /(1) [this is ensured by a further
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diagonalization of k(1) in the basis with good S]. Simple expressions for NPC or
& (FE) and Si”ﬁ’(E) in k(1) basis for spinless EGOE(1 4 2) in the Gaussian regime
are given by Egs. (5.23) and (5.25). Extending these results to EGOE(1 + 2)-s by
replacing the fixed-m variances in this expression by fixed-(m, S) variances will
give,

-s ’S 2/E\2
& (E, 8)/6508 OLETE 1 e(m, )] exp _%’

2 2752
KH(E, S) EGOE;Q)_S 1— [((m, S)]ZCXP<@> exp_<W);

2 2
Oﬂoff—diagonal(m’ S) N Uh(l)(m’ 5)
o2(m,S) U,%(l)(m,S)—i-G‘z/(z)(m,S).

[con. )P =1~
(6.6)

Note that §2GOE =d(m, S)/3 independent of E and also E is zero centered and
scaled to unit width. These results, expected to be good for reasonably large values
for Ag and A1 (this will be clear in Sect. 6.4), have been tested in many examples [12,
14]. Tt is important to stress here that a formula for o2(m, S) is available as given
ahead by Eq. (6.18). This also gives afff_ diagonal (m, S) by dropping the first three
terms and putting A; ; = O in the next three terms in this equation. Therefore, the
correlation coefficient { can be calculated without constructing the H matrices in
(m, S) spaces. A seen from Fig. 6.3, & (E) and Sinfo(EY calculated using Eq. (6.6)
describe the numerical matrix diagonalization results rather well. Thus, in general,
the spectral variance given by Eq. (6.18) ahead together with Eq. (6.6) can be used
to predict &> (E) and S (E), in the Gaussian domain (defined in Sect. 6.4) for any
(m, §2) system with fixed S. Finally, from the agreements seen in Figs. 5.2 and 6.3,
we can conclude that to a good approximation many of the results of EGOE(1 + 2)
extend to EGOE(1 + 2)-s with the parameters calculated in (m, S) spaces.

6.3 Fixed-Spin Energy Centroids and Variances

Let us start with the fixed-(m, S) energy centroids E.(m, S) = (H)™5 for a one
plus two-body Hamiltonian H = h(1) + V(2) = h(1) + [Xo Vs=02) 4 1, V=1(2)].
The operator generating (H )™ will be a polynomial, in the scalar operators 7 and
52, of maximum body rank 2. A two-body operator is said to be of body rank 2, a
three-body operator of body rank 3 and so on [21]. Then, E.(m, S) =ao + aym +
am? + a3 S(S + 1). Solving for the a;’s in terms of E. for m < 2, we obtain [22]
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Fig. 6.3 Results for
information entropy S™/ and
number of principle
components (£&2). For sinfo,
results are shown for
exp[S""f(’(E, S) — Sinfo ] fora
GOE
20 member EGOE(1 + 2)-s
ensemble with 2 =m =8
and S =0 and 1. The
continuous curves correspond
to Eq. (6.6). Similarly, results
for &) are shown for a 20
member EGOE(1 + 2)-s with
2=m=6and §=0, 1 and
2. Also shown are results for
a 5 member ensemble with
R=m=T7and S=1/2,3/2
and 5/2. Here again,
continuous curves are from
Eq. (6.6). All the ensemble
results in the figures are
averaged over a bin-size of
0.2 for
E=[E—¢e(m,S)]/o(m,S)
and they are shown as filled
circles. Some of the results
for &, are given in [12]. The
ginfo figure is taken from [14]
with permission from
American Physical Society
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Ec(m. ) =[(h()"*]m

20 PO(m,S)

21 Plm,S)

+uve) e
Po(m, S) =[m(m+2)—4S(S+1)]. (6.7)

Pl(m, S) =[3m(m —2) +45(S + D],
| 2
()2 == e,
i=1
(V=)' =>"vi  (vTeP =Y v
i<j i<j

Trivially the ensemble average of E. from the V (2) part will be zero. However the
covariances in the energy centroids generated by the two-body part H(2) = V(2) of
H are non-zero,

(H(2)>m,S<H(2))m’ N

A2 22
0 0 0 Q! 1 1 1 /o
=2 p ,OP Y — P ,S)P ,S87).
1622(£2 +1) (m, 5) (m )+ 1622(£2 —1) (m, 5) (m )

(6.8)

The spectral variances o2(m, S) = (H*™S — [(H)™5]? are generated by an
operator that is a polynomial, in the scalar operators 7 and 52, of maximum body
rank 4. This gives o2(m, §) = Y5_gapm? + Y o_y bym?S(S+1) +co[S(S+ D%
The nine parameters (a;, b;, c;) can be written in terms of &; and the two-body
matrix elements Visjflo’l using the embedding algebra U(N) D U (£2) ® SU(2). With
respect to this algebra, as pointed out in [23, 24], k(1) decomposes into a scalar
v = 0 part [given by the first term in the first equation in Eq. (6.7)] and an irreducible
one-body part with v =1. The v =0 and v = 1 parts transform, in Young tableaux
notation [25], as the irreps [0] and (21972 respectively of U (£2). Similarly V*(2),
s =0, 1 decompose into v =0, 1 and 2 parts. The scalar parts V'=0=01 can be
identified from Eq. (6.7) and they will not contribute to the variances. The effective
one-body parts V'=1=0.1 generated by Vl.sjflo'l, are defined by the induced single
particle energies A; j(s) given ahead in Eq. (6.9). The diagonal induced energies

Ai.i(s) are identified for the first time in [23]. However for EGOE(1 + 2)-s it is
possible to have X; ;(s), i # j. Now the irreducible two-body part V"= =25=0—y _
yy=0s=0 _ yv=1:5=0 4pq similarly V"=25=1 is defined. It should be noted that
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the two v = 0 parts of V(2) transform as the U (£§2) irrep [0] and the two v =1
parts of V(2) transform as the irrep [2172]. Similarly V'=2%=0 transforms as the
irrep [42272] and the V"=%%=! as the irrep [221°°~*]. Figures 5.1c and 9.2 ahead
show the corresponding Young tableaux; note that N in these figures should be
replaced by §2 for EGOE(1 + 2)-s. Using these and the group theory of U(N) D
U (£2) ® SU(2) algebra as given by Hecht and Draayer [26], a compact and easy to
understand expression for fixed-S variances emerges, with .> = S(§ + 1), m* =
2-—m/2,X(m,S)=m@m~+2)—45(S+1)and Y (m, S) =m(m —2) —45(S+1),

) (R4 2mm* =297 .,
Oti=h()+v () (M S) = 2 -1D(R2+1) Z :

m*X(m, S) .
Te@ @y ZZ“”’(O)

(2 +2)m*[3Y (m, S) + 16.72] — 82 (m — 1).72
22(2 - D2+ 1)(2-2)

x Y Einii(l)
i

[om +2)m* /2 + 21X (m, S) 32.(0)
DM
inj

882(2 —D(2+ D (2 +2)

1
I EN RN L

x {882(m — 1)(2 —2m + 4).7*

+ (2 +2)[3(m — 2)m* )2 — #?][3Y (m, S) + 8.77]}
x Y )
inj

[3(m —2)m* /2 — 21X (m, S) o
42(2 - )2+ 1)(2-2) ;kz,wm,a)

+ PR, (V'O P 4 Pl m )|V P
(6.9)
0 [ (m* + 1) — S X (m, S)
Py(m,S) = 822 1) , (6.10)
| 1
Py(m,S) =

2082+ D2 -2)(£2 -3)
< {(#2)* (322 =72 +6) /24 3m(m — 2ym* (m* — 1)
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X (2 4+ D(2+2)/8 = S2[(52 —3)(2 + 2)m*m

+ 22 -1)(R2+1D)(R+6)]/2], 6.11)
with
& =¢& —&,
Aii(s) = Z Vi (L8 — ()7 Vi (480,
k.l

hij() =D JA+8) A+ 8V, fori# ],
k (6.12)

Vi=R vy [(V(Z))z’s + (i () + 2 () (2 + 2(_1)S)71]’

ijij ijij
= o\ — 1 3 . .
Vkvika’s = Vi — (242D A+ 80 + 827 fori # J,
Vi;;z’x =Vjy, for all other cases.

Equation (6.9) along with Eq. (6.12) applies to individual members of the
EGOE(1 + 2)-s ensemble. Using these, formula for the ensemble averaged vari-
ance is obtained as follows. With &(1) and V (2) being independent gives,

o (m, ) =0, (m, S) +0y0)m, S). (6.13)

The propagation formula for 6}12(1) is the first term in Eq. (6.9).

(2 +2m(R2 —m/2) —228(S+1) 1
o1y (m, 8) = CENICES a,f(l)<1 2) (6.14)
Similarly,
oloym =Y 22> ([vr"? (6.15)

s=0,1 v=I1,2

and the four terms here correspond to terms 4, 5, 7 and 8 in Eq. (6.9). For

evaluating ([V5:'=1(2)]2)™5 we need ), ; Az ;(s) and similarly, for evaluating

([V5v=2(2)]2)m:S we need ([VS:V=2(2)]2)2:5. Flrstly, applying the fact that the V*
matrix elements are independent Gaussian random variables with zero center and
variance unity (except for the diagonal matrix elements it is 2) and simplifying us-
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ing Eq. (6.12), we obtain

D 0)=(2-1)(2+2)7
" 6.16)

Z}\ﬁj(n =(2-1D(Q2-2)(R2+2).
ij

Also, {[V5(2)]?)25 = [d(m,s) + 1]. This along with Eq. (6.9) and Egs. (6.15)
and (6.16) will give ([VS"=2(2)2)2,

1
([vs=0r=22)) P’ = (@ =2 +2),

(R2-3)(2°+2+2)
B 22 -1 '

(6.17)

[vs=t=2@F !
Substituting Egs. (6.16) and (6.17) in Eq. (6.9) gives the final result,

0‘2,(2)(m,S)
N [.Q +2
R+ D2[24+1
A2 242
Q2 - 1)/2[9+1
740242
+—r o 2 () :mvS)]s
0' ({2} :m, §) = [(2 + )P (m, $)/16][m* (m +2)/2 + .77],
0*({2}:m, §) = [2(22 +3) PO (m, $)/32][m* (m* + 1) — 2],
(£2-1)

R2432+2

1 .
o0'({2}:m, S) + TTan

0*({2} :m, S)]

+ o'({1?}:m, S)

1 2] . _ 1 2
o'({1*}:m, 8) = 16(9_2)[(9 +2)P'(m, S)P*(m, S) (6.18)
+82(m — 1)(2 — 2m + 4).7%],
2(1121 . _ £2 2 212
o*({1 }.m,s)_S(Q_z)[(ssz 12 +6)(7)

+3m(m — 2)ym* (m* — 1)(2 + 1)(2 +2)/4
+ S —mm* (52 - 3)(2 +2)
+ 22 -D)(R2+1D)(R2+6)}].

P2(m,S) =3m*(m —2)/2— % m*= (Q — %)
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Fig. 6.4 Variance propagator 1006 — 71 T
P(£2,m, S) vs S for different BN \\ftl\f\ (gA)=1 i
values of £2 and m. L \\\:\ A\\f\\ 1 1
Equation (6.19) gives the 0.8 - AN : \&\ | e——e0-8m=8
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Note that the v = 1 terms (they correspond to the Q!’s) are 1/ 22 times smaller as
compared to the v = 2 terms (they correspond to the Q2’s). Therefore in the dilute
limit defined by 2 — 00, m — 0o, m/2 — 0 and m >> S, the VS=0-1:=2 partg
determine the variances oi, (m, S) as given in [24]. Let us add that for Ag = A1 = A,

the 0‘2,(2) (m, S) takes the following simpler form,

07y m. ) T 2P (2. m, ):

P(2,m,S)
_ L @200 g 22
_9(9+1)/2[9+1Q({2}""’S)+ 22130 Q({Z}-mvs)]

: 242 5101421 - 2+82+2 500,
+9(9—1)/2[9+1Q ({1 }""’S)JFWQ (f1 }~m15)}~

(6.19)
A plot of P(£2,m,S)/P(£2,m,0) vs § is shown in Fig. 6.4. It is seen that
P(£2,m, S) decreases with spin and this plays an important role in understanding
the behavior of the chaos markers generated by EGOE(1 + 2)-s.

6.4 Chaos Markers and Their Spin Dependence

6.4.1 Poisson to GOE Transition in Level Fluctuations: A.(S)
Marker

Fluctuations in the eigenvalues of a fixed-(m, S) spectrum derive from the two and
higher point correlation functions. For example, the two-point function, in a fixed-
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(m, S) space, is

S S (Er Ep) = pS(EDpS(Ep) — p"S(E) p"S(Ep). (6:20)

The Dyson-Mehta A3 statistic is an exact two-point measure while variance a2(0)
of the nearest neighbor spacing distribution (NNSD) is essentially a two-point mea-
sure as discussed in Chap. 2. In all the discussion in this section and all other re-
maining sections in this and in the next chapter, results are discussed for Lo = A = A
(some results for Ao # A1 are given in [14]). In this situation, the EGOE(1 + 2)-s
Hamiltonian is

Hy =h(1) +A[V=2) + ve=1(2)]. (6.21)

The NNSD and Aj statistics show Poisson character in general for very small values
of A due to the presence of many good quantum numbers defined by A(1). As the
value of A increases, there is delocalization in the Fock space, i.e. the eigenstates
spread over all the basis states leading to complete mixing of the basis states giving
GOE behavior for large A values. For a 20 member EGOE(1 + 2)-s ensemble with
§£2 =m =8 and spins S = 0 and 2, NNSD for various A values changing from 0.01
to 0.2 are constructed [14] and the results are shown in Fig. 6.5. Reference [14]
also gives results for the A3 statistic. As we increase A, NNSD changes rapidly
from a form close to Poisson to a form close to that of GOE (Wigner distribution)
as seen from Fig. 6.5. For a given A, 02(0) gives the transition parameter A intro-
duced in Sect. 3.2 and then A, corresponds to A = 0.3 and equivalently one can use
Eq. (5.18). In Fig. 6.5, the values of the A parameter are given for different A values
and it is seen that the transition point A, is 0.028 and 0.047 for S = 0 and 2 respec-
tively. For a qualitative understanding of the variation of A, with spin S, it is plausi-
ble to employ the same arguments used, based on lowest order perturbation theory,
for EGOE(1 + 2), i.e. AJS criterion discussed in Sect. 5.3.1. Then, Poisson to GOE
transition occurs when A is of the order of the spacing A, between the m particle
states that are directly coupled by the two-body interaction. Given the two particle
spectrum span to be B, and the number of fixed-(m, S) states directly coupled by the
two-body interaction to be K(£2,m, S), we have A (£2,m, S) x B2/K(§2,m, S)
and therefore, A, o By /K (§2, m, S). Using the h(1) spectrum, it is easy to see that
B> o £2. Assuming that the spectral variance generated by V (2) spreads uniformly

over the directly connected states, we have O"Z/Q) (m,S) ~ MK (82, m, S). Then,
Eq. (6.19) gives K(£2,m, S) = P(§2,m, S). With this, we have

22
Ae(S) x PGS (6.22)
For 2 =m =8, Eq. (6.22) and the formula for P(£2,m,S) gives P(8,8,5 =
1)/P(8,8,S =0)=0.834 and P(8,8,5 =2)/P(8,8,5 =0) =0.55. These and
the result A.(S = 0) = 0.028 from Fig. 6.5 will give A.(S = 1) = 0.034 and
Ae(S = 2) = 0.05. This prediction is close to the numerical results as shown for
S =2 in Fig. 6.5. Therefore Eq. (6.22) gives a good qualitative understanding of
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Fig. 6.5 NNSD for a 20
member EGOE(1 + 2)-s
ensemble with 2 =m =8
and spins S =0 and 2.
Calculated NNSD are
compared to the Poisson and
Wigner (GOE) forms. Values
of the interaction strength A
and the transition parameter
A are given in the figure. The
chaos marker A. corresponds
to A = 0.3. Bin-size for the
histograms is 0.2. Figures for
S =0 and 2 are taken

from [14] with permission
from American Physical
Society
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the A.(S) variation with S. In the dilute limit (equivalent to asymptotic limit), as
defined just after Eq. (6.18), it is easily seen that P(§2, m, S) — m?£2* and hence
*e = 1/m?82. Thus we recover Eq. (5.17) for spinless fermion systems as a limiting
case.

6.4.2 Breit-Wigner to Gaussian Transition in Strength Functions:
Ar(S) Marker

Given the mean field /(1) basis states (denoted by |k)) expanded in the H eigen-
value (F) basis,

k. S, Ms) =" "C{{I|E, S, Ms), (6.23)
E
the fixed-S strength functions F s(E, S), extending Eq. (2.81), are defined by

Fis(E.S) =Y |CESPS(E — E) = | €55 Pdum, $)0™ S (E). (6.24)
E/

Here |C€k],5§S|2 denotes the average of |C ,f ’SS|2 over the eigenstates with the same en-
ergy E.InEq. (6.23), Ms = 0 for even m and Mg = 1/2 for odd m. From now on we
will drop M. Trivially, for 1 = 0, the strength functions will be é-functions at the
h(1) eigenvalues. As A increases from zero, the strength functions first change from
S-function form to BW form at A = A5 where A5 is very small; see Eq. (6.25) ahead.
With further increase of A, just as in EGOE(1 + 2), the BW form changes to Gaus-
sian form. Figure 6.6 shows strength functions as a function of A fora 2 =m =8
system with spins S =0, 1 and 2. In the calculations, E and the basis state energies
E} are zero centered for each member and scaled by the width of the eigenvalue
spectrum. The new energies are called E and E; respectively. For each member
|C,f ’SS |> are summed over the basis states in the energy window E, r = Ay and then

the ensemble averaged Fk(f ,S) vs E are constructed as histograms. For the results
in the figure, Ay = 0.025 for A < 0.1 and beyond this A; = 0.1. For each X value,
the strength functions are fitted to the ¢-distribution given by Eq. (5.27) and deduced
the value of the shape parameter «; note that 8 = U%k 2o —3)/a for ¢ > 1.5 and
the spreading width determines the parameter 8 for o < 1.5. As seen from Fig. 6.6,
the fits are excellent over a wide range of A values. The parameter « rises slowly
up to A, then it increases sharply (for « > 16 the curves are indistinguishable from
Gaussian). As pointed out in Sect. 5.4, the criterion o ~ 4 defines the transition
point A r. From the results in Fig. 6.6 it is seen that the transition point Ar is 0.15,
0.16 and 0.19 for S =0, 1 and 2 respectively.

For a qualitative understanding of the variation of A with spin S, we will
follow the same procedure used in Sect. 5.3.2 and for this, the spreading width
I’(S) and the inverse participation ratio (IPR) & (S) need to be estimated. Firstly,



142 6 EGOE(1 + 2) for Fermions with Spin
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Fig. 6.6 Strength functions Fk(E ,S), for Ek = 0, as a function of A for a 20 member
EGOE(1 + 2)-s ensemble. Calculations (histograms) are for a 2 = m = 8 system with spins
§ =0, I and 2. Note that the widths o, (m, §) of the strength functions are different from the
spectral widths o (m, S). Continuous curves in the figures correspond to the 7-distribution given by
Eq. (5.27). In the plots f Fy(E, S)dE = 1. See text for further details. Figure is taken from [14]
with permission from American Physical Society

Fermi golden rule gives I'(S) = 27 A?/D(S) with D(S) = A.(£2,m, S) as es-
tablished in [27]. Therefore, using Eq. (6.22) gives I'(S) 2722P(2,m, S)/52.
Similarly, &(S) ~ I'(S)/A,(S) with A,,(S) being the average spacing of the
m particle fixed-S spectrum. The total spectrum span considering only %4(1) is
By, o« m$2 and therefore A, (S) cc m$2/dy (82, m, S). In the BW domain, I'(S)
and &(S) should be such that (i) I"(S) < foB,; and (ii) &(S) > 1 where fy < 1.
Condition (i) gives, A2 < Com$22/P(22,m,S) and condition (ii) gives, 22>
Bom.QZ/P(.Q, m, S)dy($2,m, S). Note that the constants Cp and By are positive.

Therefore,
Bom$22 Com$2?
LKA< | —=——=
P(2,m,8)ds(2,m,S) P(2,m,S)

= AR(S) ms2?
F P(2,m,S)

(6.25)

This equation shows that just as A., the marker A is essentially determined by the
variance propagator P (£2, m, S). Also as X increases from zero, the BW form sets in
fast as d¢ (82, m, S) is usually very large. From the results in Fig. 6.6, it is clear that
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Ar should increase with S. Equation (6.25) along with the result Ar (S = 0) =0.15
gives Ap(S =1) =0.16 and Ap(S = 2) = 0.2. All these are in close agreement
with the numerical results. In the dilute limit with P(§2, m, S) — m2§22%, we have
AF — 1/4/m and thus reducing to Eq. (5.19) for spinless fermion systems.

6.4.3 Thermodynamic Region: L;(S) Marker

Following the EGOE(1 + 2) analysis, let us compare, for different A values, the
thermodynamic entropy

Sher(Ey =1n p™S(E), (6.26)

the information entropy,
. 1 .82 E',S|2
SMOE,S) = —— 3" |5 | O TS (E - ). (6.27
9 = G 515m5(8) 20 2|k [ 0ICL5TTOE=E). 02D

and the sp entropy

SSP(E, S) = —Z2{f,-(E, S)In fi(E, S) +[1— fi(E,S)]In[1 - fi(E, ]},

(6.28)
where the fractional occupation probabilities f;(E, S) = %(ni y™S-E - As already dis-
cussed in Sect. 6.2, Eq. (6.6) describes sinfe and similarly, Eq. (5.33) for S*7 extends
to fixed-(m, ) spaces by replacing ¢ by ¢(m, S). For 2 =m = 8 and § = 0 system
with 20 members, results for A = 4;(S) =0.21, A =0.01 K 1,(S) and A =2 >
1:(S) are shown in Fig. 6.7. Note that exp[S""" (E, S) — S!h¢r] —s exp—%fz for
all 1 values as the eigenvalue density is a Gaussian essentially independent of A.
For the examples in Fig. 6.7, {2 =0.998, 0.5 and 0.039 for A =0.01, 0.21 and 2
respectively. It is clearly seen from Fig. 6.7 that the three entropies differ as we go
away from A = A; and at A = A; they all look similar. Therefore, A = A; region can
be interpreted as the thermodynamic region in the sense that all different definitions
of entropy coincide in this region. Then as in EGOE(1 + 2), in the A ~ A, region
all quantities are expected to be basis independent. This, if we consider the 4 and
V basis, reduces to the criterion that the spreadings produced by A(1) and V(2)
should be equal at A = A, i.e. a,fm (m, S) = 03(2) (m, S). To determine o,f( 1 (m, S),

we consider a uniform spectrum with A = 1. Then, ohz(l)(l, %) = (.92 —1)/12 and
using this in Eq. (6.14) we have,
1
a,f(l)(m, S)=H(R2,m,S)= E[m(sz +2)(2 —m/2) —228(S+ 1]. (6.29)

Combining this with Eq. (6.19) will give finally

[ (82, m,S)
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Fig. 6.7 Thermodynamic entropy exp[S'"*(E,S) — Sir], information ent}r\opy

exp[S™(E,S) — Sg'g’E] and single-particle entropy exp[S*P(E,S) — Sib]l vs E =
[E — E.(m,S)]/o(m,S) for a 20 member EGOE(1 + 2)-s ensemble with 2 = m = 8 and
S = 0 for different X values. Entropies averaged over bin-size 0.2 are shown as filled circles.
Note that for A = 0.01, exp[Si”f"(E, S) — SggE] is close to zero for all E values. Figure is taken
from [14] with permission from American Physical Society

For the numerical results shown in Fig. 6.7, A;(S = 0) = 0.21. Then, Eq. (6.30)
gives (S = 1) =0.22 and A,(S = 2) = 0.24. In the dilute limit, simplifying the
A and P factors, we have A, — 1/./m and this is same as Eq. (5.35) for spin-
less fermion systems. This also shows that in the dilute limit A; and Ar have
same scale. However these scales differ parametrically as m approaches £2 (for
m > §2 one has to consider holes) and S 2 m/4. In this situation A;(S)/Af(S)

[m(s2 +2)(Q_n’:‘(/222)_ms(s+l)]. Thus the variance propagator determines the behav-

ior of the three transition markers A.(S), A (S) and A;(S).
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6.5 Pairing and Exchange Interactions in EGOE(1 + 2)-s Space

6.5.1 Pairing Hamiltonian and Pairing Symmetry

With spin degree of freedom for the fermions, it is possible to introduce pairing
in the (m, S) spaces of EGOE(1 + 2)-s. General discussion of pairing algebras for
fermion systems for example is given in [28-35]. Results in this section follow
from [33]. Let us start with the single particle states a;% mle) =|i,mg = :I:%) with

i=1,2,..., 52 and define coupled (in spin space) one—bedy operators u), (i, j),
.o T o~
u, G, j) = (ajdj),; r=0,1 6.31)

These 4522 number of operators generate the U (2£2) algebra. They satisfy the fol-
lowing commutation relations,

[, G, ). u ,(k n]_ Z( D ) |r” W@+ D)@+ 1)

r ror
“N1/2 172 12
x [l (k. )8 — (=D U G D). (632)

Note that, from now on we do not include, for obvious reasons, the index w in
Eq. (6.31) for r = 0. For m fermions, all states belong to the U (252) totally an-
tisymmetric irrep {1™} and therefore uniquely represented by the particle number
m. A simple subalgebra of U (2£2) is generated by the space x spin decomposition
and this corresponds U (2£2) D U($2) ® SU(2) with SU(2) generating spin S and
the ‘space’ part U (.{2) Corresponds tothe splevelsi =1,2,..., £2. Itis easily seen
that the operators u (a a ])0 which are £22 in number, generate U (£2) algebra.
Similarly, the operators Cij= u?j (j)l, i > j, which are £2(£2 — 1)/2 in number,
generate the SO(S2) sub-algebra of U (£2). The spin operator §S=§ IIL, the number
operator 7 and the quadratic Casimir operators C;’s of U (£2) and SO(£2) are

u J—Z ii;p

ﬁ:Zni, n; = x/_ull,
i (6.33)
L (U(£2)) 22% uf;,

»(S0(£2)) =2 Z CiiCji.

l>j
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The structure of Co(U(£2)) in terms of the number operator and the §.8=282
operator is,

C(U2)) = ﬁ(sz +2-— g) — 282,
(6.34)
(C2(U @)™ = m(Q +2- %) —28(S+1).

Note that (Co(U ()W =Y, fi(fi + 2 +1—=2i). AsUQ2R) D U(2) @ SU(2)
with the SU(2) algebra generating total spin S, the U (£2) irreps are labeled by two
column irreps {2719} with m =2p + g, S = q/2. As a consequence, the SO(2)
irreps are also of two column type and we will denote them by [2¥11"2]. Here, vg =
2v1 + vy is called seniority and 5§ = v, /2 is called reduced spin. We also have

(C2(S0(2)))" Zw, (i + 2 —20)
(6.35)
= (Ca(s0(2))*" ™ = <9+1—7) — 255G+ 1.

Significance of SO(§2) follows by defining the pairing Hamiltonian H, where,
1 0

H,=P>=pPP", P=—% (da)’=%"P,

: G S =2

((kO)s|Hp|(ij)s) = 85,081, j6k.e-

(6.36)

Note that P is the generalized spin S = 0 pair creation operator and P; is the pair
creation operator for each orbit i. After some commutator algebra it can be shown
that [36],

A

2H, = —C>(50(2)) +ﬁ<9 +1- %) — 282,
! (6.37)
(Hp) "3059 = 2 m — )22 +2 = m —vs) + [§G + 1) =SS+ D],

To proceed further, classification of U(2§2) D [U(£2) D SO(£2)] ® SU(2) states
defined by (m, S, vs, §) quantum numbers is needed. This problem, i.e. (m, S) —
(vs, §) reductions, is solved in principle by group theory. Using the tabulations
in [37], results are given in Tables 6.1 and 6.2 for: (i) m < 4,82 > 4; (ii)) m =
5-8,2=6,8.

A much simpler approach to derive the eigenvalue formula for the pairing oper-
ator, the pairing quantum numbers and the irrep reductions is to use [38] the group-
subgroup chain U (2§2) D Sp(2§2) D SO(£2) ® SUs(2). This shows that pairing is
defined by a complementary SU(2) algebra. Firstly, the 262 (£2 — 1) number of oper-
ators Vlj (i, j) along with 3£2 number of operators uL(i, i) form the Sp(252) algebra
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Table 6.1 (m, S) — (vs, 5)
reductions for m <4 and
2>4

Table 6.2 (m, S) — (vg,5)
irrep reductions for

(2 =6;m=06)and

(82 =8;m=5—38). Note
that the dimensions of the
irreps are given as subscripts
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(m. S) (vs.9)

(0,0) (0,0)

(R (R

2,0) (2,0, (0,0)

2,1 2,1

G.3 G.p. A5

G.3) {1, He=s: 2. De=s: B, 3as6)

4,0) 4,0), (2,0), (0,0)

(CN)) {(2,0)2=4; 3.3 e=s: @ Dase} 2.1)
4.2) {(0,000=4: (I Do=s; 2. Do=6. 3.3)a=7

4,2)0>8}

2 (m,S)pm,s)

(vs,3) D(vs,5)

6  (6,0175
(6, D189
(6,2)35
(6,3)1

8 (5 $ioos
(5, 3)s04
(5. 3)s6
(6,01176
(6, D1s12
(6,2)a20
(6,3)28
(7. Hass:
(7, 1344
(7, 3216
7, Ds
(8,0)1764
(8, Da3s2
(8,2)720
(8,3)63
3,41

(6,0)70, (4, 0)84, (2, 0)20, (0,0),
4, Doo, (4,0)84, (2, )15

(2, D1s, (2,0)20

(0,0

(5. Dga0. 3. Do (1, 18

(5. 3)aas. 3. )s6

3,356

(6, 0)340, (4, 0)300, (2, 0)35, (0, 0);
(6, D134, (4, D350, (2, D)2g

4, D350, (4,2)70

(2, Dog

(7, D 1344, (5. Dsao. 3, Dieos (1, $)s

(5. D40, (5, 3)aas, (3, 3)s6

3, Dieos 3, 3)s6

(1, 3)s

(8, 0)s88, (6, 0)840, (4, 0)300, (2, 0)35,
(6, 0)840, (6, 1) 1134, (4, 1)350, (2, 1)28
(4, 0)300, (4, 1)350, (4,2)70

(2,0)3s, (2, 1)28

(0,0

0,0):

[total number of generators = 2£2(§2 — 1) + 382 = £2(252 + 1)] where Vlj (@, j) are,

Vi) =V Dl G ) — (D D] P> g r=0,1.

(6.38)
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The quadratic Casimir operators of the U (2§2) and Sp(2£2) algebras are [33],

Glue)] =) u'G,j)-u' (i),

LJj.r

Ca[Spe)] =2 u'G.i)-u'Gi)y+ D VG j) VL))

i>j,r

(6.39)

Simplifying these, using angular momentum algebra and the anti-commutation re-
lations for fermion creation and annihilation operators, will give

CUeR))=2i2-2) PP/

1

Y Vas+1[ss + D) = 1][(a]a}) @],

i#j,s
(6.40)
CSp2)] =2+ i—6Y PP —4) (P, PJT +P;P)
i i>]
— Y Vas+1[s6s + ) = 1][(a]a}) @5a)*]".
i#j,s
Therefore,
C[UQ2)] - C[Sp22)] =4PPT — 4. (6.41)

Here, a crucial point is that the operators P, P and Py form a SU(2) algebra,
[P, PT]=h-2=2P, [P.Pl=P, [P0.P']=-P" (642

with Py = (n — £2)/2. The spin that corresponds to this SU(2) is called quasi-
spin Q. Then the Q. operator is nothing but Py and its eigenvalues are Mg =
(m — $2)/2. This then gives Q = (£2 — v)/2 and, for m < §2, v take values
v=m,m —2,...,0 or 1. The situation here is same as identical particle pairing
discussed extensively in nuclear structure [28]. The quasi-spin SU (2) algebra eas-
ily gives the eigenvalues of the pairing Hamiltonian Hp = P PT,

m,v,S 1

= (=022 +2-m—v). (643)

Ep(m,v,S) = (Hp)™"S =(PPT)

Also, as all the m nucleon states behave as basis states of the totally anti-symmetric
irrep {1} with respect to U (252) algebra, we have

(Cluea)])" =mee +1-m). (6.44)

Combining this with Eq. (6.41) will give,

Co[Sp(292)] =20 (9 +1- %) (6.45)
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Table 6.3 Classification of

states in the U (2£2) D m S v D(£2,m,v,S) (Hp)y™ S
Sp(2£2) D SO(£2) ® SUs(2)
limit for (2 =6, m = 6). 6 0 6 70 0
Given are (m, v, S) labels, the 4 84 2
corresponding dimensions
D(m, v, S) and the pairing 2 20 6
Hamiltonian Hp eigenvalues 0 1 12
1 6 84 0
4 90 2
2 15 6
2 6 20 0
4 15 2
3 6 1 0

Therefore, seniority quantum number v corresponds to totally anti-symmetric irrep
(1Y) of Sp(2£2). Thus Sp(252) corresponds to SU (2) algebra generated by (P, PT,
Pp). Also, v uniquely fixes SO(S2) irrep for fixed (m, S). From SU(2) quasi-spin
algebra it is easy to write the structure of H), eigenfunctions,

_ @ =v=Dp) v, ) _m=v
|m,v,S,a)— ml) |m-U,U,S,O{>, p—T (646)

The spin S is generated by the v free particles and therefore v > 2S. Then, given m
and S we have (for m < £2),

v=m,m—2,...,28. (6.47)
Similarly, the dimensions of the (m, v, S) irreps are given by
D(2,m,v,8)=di(2,m=v,8)—df(2,m=v-2,9) (6.48)

and Eq. (6.2) gives the formula for d;($2,m,S). Note that ZU’S(ZS + 1) x
D(2,m,v,8) = (> and ", D(2,m,v,S) =d(2,m, ).

It is also seen that both § :L and C;; are in the Sp(252) algebra and therefore
Sp(282) D SO(£2) ® SU(2). Comparing the results in Tables 6.1 and 6.2 with those
in Tables 6.3 and 6.4 also the irrep reductions, it is clearly seen that the Sp(252)
irreps uniquely define the SO(S2) irrep for a given (m, S). Therefore, as it is much
simpler, one can use U (2£2) D Sp(2§2) D SO(£2) @ SUs(2) symmetry scheme for
pairing in EGOE(1 + 2)-s.
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Table 6.4 Classification of

states in the U (2£2) D mn S v D(2,m, v, S) (Hp)" "
Sp(2£2) D SO(£22) ® SUs(2
lilsrgit fo)r « :(8,) @ 3 5 840 0
m=25,6,7,8). Given are (m, 3 160 5
v, ) labels, the 1 8 12
corresponding dimension.s . % 5 448 0
D(£2,m, v, S) and the pairing
Hamiltonian Hp eigenvalues 5 3 3 >
3 5 56 0
6 0 6 840 0
4 300 4
2 35 10
0 1 18
1 6 1134 0
4 350 4
2 28 10
2 6 350 0
4 70 4
3 6 28 0
7 : 7 1344 0
5 840 3
3 160 8
1 8 15
3 7 840 0
5 448 3
3 56 8
2 7 160 0
5 56 3
] 7 8 0
8 0 8 588 0
6 840 2
4 300 6
2 35 12
0 1 20
1 8 840 0
6 1134 2
4 350 6
2 28 12
2 8 300 0
6 350 2
4 70 6
3 8 35 0
6 28 2
4 8 1 0
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6.5.2 Fixed-(m, v, S) Partial Densities

Expansion of the eigenstates in the |m, v, S, o) basis with the expansion coefficients
m,v,S,a

being C, will allow us to define fixed-(m, v, S) partial densities P VS (E),

1

m,v,S _ _ m,v,S _ m,v,S,a|2
P E) = (b(H — ) D(2.m. v, S) ;‘CE |

(6.49)
= I"™US(E)=D(R2.m,v, )" S(E) =Y |Cp S,
o

It is important to note that fixed-S density of states p”5 (E) decomposes into a sum
of fixed-(m, v, S) partial densities,

D(£2,m,v,S)

m,S m,v,S
S(Ey=) S S (E
prE) dp($2,m,S) p (£)

v

(6.50)
= I"5E)=)_I1""S(E).

v

The partial densities p”-V-5(E) are defined over broken symmetry subspaces and
also they are sums of strength functions (strength functions are defined for each ba-
sis state). For EGOE(1 + 2) and EGOE(1 + 2)-s we have already shown that the
strength functions are Gaussian for A > Ar and by an extension this, it is to be ex-
pected that the partial densities o™ V-S(E) will take Gaussian form in the Gaussian
domain with A > Ap. On the other hand, Egs. (6.47) and (6.48) clearly show that
the state density generated by the pairing Hamiltonian H = —H), will be a highly
skewed distribution and therefore, one may expect that the fixed-(m, v, S) partial
densities may be highly skewed. Therefore it is important to establish the shape of
0"™V-S(E). Numerical examples shown in Fig. 6.8 and in Ref. [38] confirm that the
partial densities """ (E) indeed take Gaussian form for A > A . Thus the fixed-
(m, v, S) partial densities take Gaussian form in the Gaussian domain defined by
A > Ap for EGOE(1 + 2)-s. Extension of this result for EGOE(1 4 2)-J ensemble
(see Chap. 13 for the definition of this ensemble) with subspaces defined by the pair-
ing Hamiltonian, i.e. for fixed-(m, v, J) partial densities, is often used in statistical
nuclear spectroscopy [39—41] without proof.

For constructing Gaussian partial (m, v, S) densities, we need fixed-(m, v, S)
centroids E.(m,v,S) = (H)™"S and variances o2(m,v,S) = (H?)™VS —
[E.(m, v, $)]*. Simple (Casimir) propagation equations for these are possible. From
Table 6.1 one can see that the number of (m, v, S) irreps A; is 5 for m up to 2 and
there are 5 simple scalar operators a- of maximum body rank 2, a- =1,n, (’;), H,
and 82 fori = 1-5 respectively. Note that (Hp)m’“’s and (3’2)’”’\"5 are E,(m, v, S)
[see Eq. (6.43)] and S(S + 1) respectively. More remarkable is that, for m < 4, the
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Fig. 6.8 Partial densities
p" VS (E) vs E for a 20
member EGOE(1 + 2)-s
ensemble for 2 =m =6 and
AM=A1=A=03in

Eq. (6.1). The values of

(v, S), dimension D, width o
and y» for the densities are
given in the figure. Note that
y1 ~ 01in all cases. The
energies E are zero centered
with respect to the centroid &
and scaled with the width o
of p™¥-S(E). The histograms
(with 0.2 bin size) are exact
results, dashed curves are
Gaussians and the continuous
curves are Edgeworth
corrected Gaussians. Similar
results for 2 =m = 8 are
reported in [38]
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S=0

m=6,N=12,A=0.3

05
0.4 L 0=6.60

=0
1

| 6=5.03

=2

"
D=15

-3 -1 1
(E-¢)/c

3

1 3

(E-¢)/c

number of (m, v, S) irreps 7; is 14 as seen from Table 6.1 and also the available

simple scalars €, of maximum body rank 4 are exactly 14. These are € =1,h, ("),

2

(), (3), Hp, iHp, (3 Hp, (Hy)?, HpS82, §2, 782, (3)82 and (§%)? for i = 1-14
respectively. For any I" = (m, v, S), propagation equation for the energy centroids
is easy to write in terms of the row matrices [C(1")] and [£’] with 5 elements and
the 5 x 5 matrix [ X], where

() =[c)]ix17ET;

[ca)] & Guy=(C)",
[£1 & &= (H)",
[X] < Xij=<6j)Ai-

6.51)

Similarly, the propagation equation for (H?)!" in terms of the row matrices [€'(I")]
and [.’] with 14 elements and the 14 x 14 matrix [Y], is
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1" _ —~
(H2) =[eD]YT L)
[c(H] & G=@@)",
v (6.52)
7] & S=(H?)",
¥l & Y;=(@)7.
Using EGOE(1 + 2)-s computer codes, it is easy to construct, even for large £2

values, the H matrices for m < 4 and using them, it is easy to obtain the input
matrices [&] and [.¥] for centroids and variances propagation.

6.5.3 Exchange Interaction

Space exchange or the Majorana operator M that exchanges the spatial coordinates
of the particles and leaves the spin unchanged is defined by

Mli,as j, B) =1j, @i, B). (6.53)

In Eq. (6.53), labels (i, j) and (¢, B) denote the spatial and spin labels respectively.
Asli,a; j. B) = (a] 4a| £)|0), we have

o
M= Z jalﬂ zozjﬂ)

iJ,o.p8

1
=3 (C[u@)] - 2h). (6.54)

In Eq. (6.54), C2[U (£2)] = Zi,j,a,ﬂ azaaj,aa;,ﬁai‘,g is the quadratic Casimir invari-
ant of the U (£2) and simple algebra gives

2
C[U@)]=i2+2) - ”7 _282. (6.55)

Finally, combining Egs. (6.54) and (6.55) will give,

M:—S‘z—ﬁ<% _ 1). (6.56)

Therefore, the interaction generated by the 52 operator is the exchange interaction
with a number dependent term. This number dependent term becomes important
when the particle number m changes. Applications of EGOE(1 + 2)-s and its exten-
sions including the pairing Hamiltonian and the Majorana operator will be discussed
in the next chapter.
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Chapter 7
Applications of EGOE(1 + 2)
and EGOE(1 + 2)-s

7.1 Mesoscopic Systems: Quantum Dots and Small Metallic
Grains

Quantum dots and small metallic grains, being mesoscopic systems whose transport
properties can be measured [1, 2], are generic systems for exploring physics of small
coherent structures [3-5]. As the electron phase is preserved in mesoscopic systems
[the phase coherence length increases rapidly with decreasing temperature and for
system size ~100 pm, the system becomes mesoscopic below ~100 mK], these are
ideal to observe new phenomenon governed by the laws of quantum mechanics not
observed in macroscopic conductors. Also, the transport properties of mesoscopic
systems are readily measured with almost all system parameters (like the shape and
size of the system, number of electrons in the system and the strength of coupling
with the leads) under experimental control.

Quantum dots are artificial devices obtained by confining a finite number of elec-
trons to regions with diameter ~100 nm by electrostatic potentials. Typically it con-
sists of 10° real atoms but the number of mobile electrons is much lower, ~100.
Their level separation is ~10~* eV. In isolated or closed quantum dots, the coupling
to leads is weak and conductance occurs only by tunneling. Also the charge on the
closed dot is quantized and they have discrete excitation spectrum. The tunneling of
an electron into the dot is usually blocked by the classical Coulomb repulsion of the
electrons already in the dot. This phenomenon is called Coulomb blockade. This re-
pulsion can be overcome by changing the gate voltage. At appropriate gate voltage,
the charge on the dot will fluctuate between m and m + 1 electrons giving rise to a
peak in the conductance. The oscillations in conductance as a function of gate volt-
age are called Coulomb blockade oscillations and at sufficiently low temperatures,
these oscillations turn into sharp peaks. In Coulomb blockade regime kT <« A K E,.
where T is the temperature, A is the mean single particle level spacing and E. is the
charging energy. The quantum limits of electrical conduction are revealed in quan-
tum dots and conductivity exhibits statistical properties which reflect the presence
of one-body chaos, quantum interference and electron-electron interaction.
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Lecture Notes in Physics 884, DOI 10.1007/978-3-319-04567-2_7,
© Springer International Publishing Switzerland 2014


http://dx.doi.org/10.1007/978-3-319-04567-2_7

158 7 Applications of EGOE(1 + 2) and EGOE(1 + 2)-s

Ultra-small metallic grains are small pieces of metals of size ~2-10 nm. The
level separation for nm-size metallic grains is smaller than in quantum dots of sim-
ilar size and thus experiments can easily probe the Coulomb blockade regime in
metallic grains. Also, some of the phenomena observed in nm-size metallic grains
are strikingly similar to those seen in quantum dots.

Mesoscopic fluctuations are universal dictated only by a few basic symmetries of
the system. Random matrix theory describes the statistical fluctuations in the univer-
sal regime i.e. at energy scales below the Thouless energy E = gA, g is the Thou-
less conductance. In this universal regime, random matrix theory addresses ques-
tions about statistical behavior of eigenvalues and eigenfunctions rather than their
individual description. A closed mesoscopic system (quantum dot or small metallic
grain) with chaotic single particle dynamics and with large Thouless conductance g
is described by an effective Hamiltonian which comprises of a mean field and two-
body interactions preserving spin quantum number. For chaotic isolated mesoscopic
systems, randomness of single particle energies leads to randomness in effective in-
teractions that are two-body in nature. Hence, it is appropriate to invoke the ideas of
embedded ensembles generated by random two-body interactions to understand and
also predict properties of these systems theoretically [4, 5]. A realistic Hamiltonian
for isolated mesoscopic systems conserves total spin S and includes a mean field
one-body part, (random) two-body interaction, pairing interaction H,, and exchange

interaction $2. Thus, an appropriate Hamiltonian is (with A, and A s being positive),

[H G, 20 Ap, As) ) = (D) + 2o V2 + 11 V=1 @)} — 2 H)y — 2582
(7.1)
The constant part arising due to the charging energy that depends on the number of
fermions in the system can be easily incorporated in the Hamiltonian when required.

7.1.1 Delay in Stoner Instability

Standard Stoner picture of ferromagnetism in itinerant systems is based on the com-
petition between the one-body kinetic energy [generated by (1) in Eq. (7.1)] and
the exchange interaction (82). One-body kinetic energy (Pauli principle as applied
to the distribution of fermions in sp levels) favors demagnetized ground states while
sufficiently strong repulsive exchange interaction (—52) favors maximum spin to be
ground state. However, random interactions also disfavor magnetized ground states.
In order to understand this, first we need a prescription for determining the ground
state (gs) energies. The eigenvalue density of a system modeled by EGOE(1 + 2)-s
is a Gaussian and therefore the gs energies are largely determined by the widths
of the corresponding Gaussians. With a Gaussian density of states, gs energy Eg
can be obtained by inverting the equation 1/2 = f_Egg Iy(x)dx; as E.(m,S) =0,
14 (E) is zero centered. The inversion gives, using the results in [6] and ignoring the
dimension effects as they will be logarithmic, the following simple relation
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Here, B is a positive constant. In Eq. (7.2) we have shown, for later use, that o de-
pends on £2, Ap and Aj. It is possible to incorporate in Eq. (7.2) the effects due to
the deviations of the spectral shape from exact Gaussian form [7, 8]. Though this is
well known in nuclear physics [9, 10], it was advocated in mesoscopic physics in
the context of EGOE(1 + 2)-s by Jacquod and Stone [11] and hence we call it JS
prescription from now on. Therefore, applying the JS criterion and comparing the
ensemble averaged spectral variances generated by a random interactions [given by
Eq. (6.18)] for different spins S, for fixed §£2 and m values, will give the S value for
the absolute gs of the system. It is seen from Fig. 7.1, constructed using Eq. (6.18),
that the variances decrease with increasing spin and this behavior is independent
of the ratio f = )Lf) /A%. Therefore, random interactions generate gs with minimum
value for S. Thus, the result that follows easily from Fig. 6.4 extends to the situations
with A9 # A1 and explain in a simple way that in general there will be preponder-
ance of gs with spin S,,;, = 0 for m even or Sy, = % (m odd) for mesoscopic
systems. As minimum spin ground states are favored by random interactions, the
Stoner transition will be delayed in presence of a strong random two-body part in
the Hamiltonian. For a better understanding of these results, numerical calculations
are carried out [12] for £2 =m = 8 using H (A, A, 0, Lg) in Eq. (7.1) and the prob-
ability P (S > 0) for the gs to be with § > 0 (for m even) is shown as a function
of A and Ag in Fig. 7.2. Similar calculations for smaller systems with 2 =m =6
were given in [11, 13, 14]. It is seen from the results in Fig. 7.2 that the probability
P(S > 0) for ground state to have S > 0 is very small when A > A and it increases
with increasing A s. Figure also gives for a fixed A value, the minimum A g needed for
ground states to have S > 0 with 100 % probability. These numerical results clearly
bring out the demagnetizing effect of random interaction. Thus the model given
by the Hamiltonian {ﬁ (X0, A1, 0, As)} explains the strong bias for low-spin ground
states and the delayed ground state magnetization by random two-body interactions.
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Fig. 7.2 Probability P(S > 0) for ground states to have S > 0 as a function of exchange interac-
tion strength Ag for A = 0 to 1.2 in steps of 0.15; used here is ﬁ(k, A, 0, Lg) defined by Eq. (7.1).
The calculations are for 200 member EGOE(2)-s ensemble with £2 = m = 8. Inset of figure shows
the minimum exchange interaction strength Ag required for the ground states to have S > 0 with
100 % probability as a function of A. It is seen from the results that the probability P(S > 0)
for gs to have § > 0 is very small when A > Ag and it increases with increasing As. The results
clearly bring out the demagnetizing effect of random interaction. Similar calculations have been
performed in the past for smaller systems with £2 =m = 6 [13, 14]. Figure is taken from [12, 15]

7.1.2 Odd-Even Staggering in Small Metallic Grains

For nm-scale Al particles (5—-13 nm in radius), odd-even staggering is observed in
gs energies measured using electron tunneling [16]. This phenomenon is normally
associated with pairing interaction effects. Surprisingly, it can also arise from ran-
dom two-body interactions as pointed out first in [17]. Odd-even staggering implies
that the gs energy of even particle system is larger than the arithmetic mean of its
odd number members. Then,a good staggering indicator is

Ap(m) = Egs(m + 1, Spin) + Egs(m — 1, S),;,,) — 2Egs(m, S,

min) (7.3)
and this is the second derivative of the gs energy with particle number m . Firstly, it is
easy to see that H= h(1) will generate odd-even staggering. Given the sp energies
g,i=12,...,82, we have Ay(m) = €241 — &my2 for m even and Ay(m) =0
for m odd showing odd-even staggering. Going to the strong interaction regime,
one can use EGOE(2)-s in the Gaussian domain. In this situation, staggering effect
generated by random interactions can be understood by employing the JS crite-
rion. For EGOE(2)-s using Eq. (6.18), spectral variance o2(m, S) can be written as
AMo2(2,m, S, f =13/A). Then, Egs. (7.2) and (7.3) will give
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where S,;, = 0 for even number of particles and % for odd particle number. Note
that 8 is a constant and f = )%/)»%. In Fig. 7.3, the staggering indicator A (m)
with |BA1] = 1 is shown as a function of particle number m for £2 = 24 and three
different values of f. Results in the figure confirm that random interactions generate
odd-even staggering in gs energies even when f = 1. The S(S + 1) and [S(S + 1)]?
terms in the variance propagators P’s given by Eq. (6.18) [similarly, for Ao = A the
propagator is given by Eq. (6.19)] are responsible for the staggering effect.

Odd-even staggering in the transition region between pure mean-field limit and
strong two-body interaction has been studied numerically by Papenbrock et al. [17]
using a 200 member EGOE(1 + 2)-s ensemble with £2 =10 and m = 3,4, ..., 17.
The Hamiltonian adopted was a variant of Eq. (6.1),

{H} = cosgph(1) +sing[1o{V=2)} + 2 [V*=12)] (7.5)

so that ¢ = 0 gives the mean-field limit and ¢ = /2 gives strong interaction limit.
Varying ¢, calculations are carried out and the largest matrix in these calculation has
the dimension d = 63504. It is important to mention that even with the best avail-
able computing facilities, it is not yet feasible to numerically study the properties of
large systems (£2 > 10) modeled by Eq. (7.5). Results for three different choices
of A's and ¢’s are shown in Fig. 7.4. Clearly, there is staggering effect in the transi-
tion domain. Results in the figures show that the interaction induced staggering can
be clearly distinguished from mean-field effects. Also, random interaction induced
staggering is a smooth function of particle number.
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7.1.3 Conductance Peak Spacings

Coulomb blockade oscillations yield detailed information about the energy and
wavefunction statistics of mesoscopic systems. Spacing between two neighboring
conductance peaks, as a function of the gate voltage for temperatures less than the
average level spacing, is simply given by A, (m) defined by Eq. (7.3). Therefore,
the peak spacing distribution is the distribution P(A;) of the spacings A,. The
P(A>) has been used in the study of the distribution of conductance peak spacings
in chaotic quantum dots [4, 18] and small metallic grains [19] using chaotic sp dy-
namics. Alhassid and collaborators have demonstrated for the first time [4, 20] that
EGOE but not GOE describes the experimental results for P(A»).

Let us first consider non-interacting spinless finite Fermi systems, i.e. H = h(1)
with no spin and say the sp energies are ¢;; i = 1,2, ..., N. Now the ground state
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energy E é(,'?_l) for m — 1 particles is obtained by filling the sp states from bottom
by applying Pauli principle. Addition of one particle in the system results in the gs
energy ES) = ESV D 46, and similarly EGr ™" = ES D 4 6, + en41, by Pauli
principle. Then, Ay = &,,4+1 — &5, irrespective of whether m is even or odd. For
mesoscopic systems, it is possible to consider sp energies drawn from GOE eigen-
values [4, 18] with the assumption that the single particle motion will be chaotic.
Therefore P(A3) corresponds to GOE spacing distribution Py (A)—the Wigner
distribution. However, experiments showed that P(A;) is a Gaussian in many sit-
uations [21] as shown in Fig. 7.5a. This calls for inclusion of two-body interaction
and hence the importance of EGOE(1 + 2) in the study of conductance fluctuations
in mesoscopic systems [4, 20]. Alhassid et al. [20] considered m spinless fermions
in N sp states with H = h(1) + AV (2) and k(1) in one particle space is chosen to
be N x N GOE with average spacing A, between the levels in one particle space.
Similarly V(2) in two-particle space is a GOE with unit variance for the matrix el-
ements. Using this EGOE(1 + 2) (called RIMM in [20]), calculations are carried
out for a system with N = 12 and m = 4. Results are shown in Fig. 7.5b for the
distribution of Zz = (A — (Az))/ A for several different values of A/Ag. Clearly
it is seen that with strong enough interaction, peak spacing distribution approaches
Gaussian form as seen from Fig. 7.5b. Although the results in Fig. 7.5, with a uni-
modal form for the peak spacing distribution, appear to indicate that the spin degree
of freedom of electrons (hence pairing) is not important, later experiments with ap-
propriate system parameters did show effects due to spin degree of freedom. Now
we will turn to this.

With electron carrying spin degree of freedom, pairing effects are expected to
be seen in conductance peak spacings distributions. With the system Hamiltonians
conserving total spin S, it is important to consider sp levels that are doubly degen-
erate. Thus, more generally EGOE(1 + 2)-s is relevant. Again, we start with non-
interacting finite Fermi systems with sp energies ¢;,i = 1,2..., §£2 and drawn from
a GOE; total number of sp states N = 2£2. In this scenario A, depends on whether
m is odd or even. For m odd, say m = 2k + 1, the (m — 1) fermion ground state
energy Egl_l) = 225‘:1 &, Eg';) = E(m D + &x+1 and E( m+1) E(m D + 2ek+1
resulting in Ay = 0. Similar analysis for even m = 2k ylelds A = eg+1 — &; note
that E{E,’g") = 221 | i E('" D E(m) &k and E(mH) E(m) + &x41. For odd m,
Aj corresponds to even- odd even trans1ti0n and P(Az) isa delta function. For even
m, we have odd-even-odd transitions with P (A3) following Wigner distribution. As
we need to include, for real systems, both these transitions, inclusion of spin degree
of freedom gives bimodal distribution for P(A5),

1
P(Ay) = 5[8<Az) + Py (A2)]. (7.6)

Convolution of this bimodal form with a Gaussian has been used in the analysis of
data for quantum dots obtained for situations that correspond to weak interactions
[22]. This analysis showed that spin degree of freedom and pairing correlations
are important for mesoscopic systems. Note that pairing correlations (H)) favor
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Fig. 7.5 (a) Conducting peak
spacing distributions for
GaAs quantum dots.
Histograms of normalized
peak spacing (v) distributions
with magnetic field B =0
and B # 0 from three devices.
Shown also are the best fits to
normalized Gaussians. Given
the spacings A,

v=A/(A) — 1. Figure is
taken from [21], by removing
the insect figures in the
original figure, with
permission from American
Physical Society. (b) Peak
spacing distributions for
EGOE(1 + 2) model
described in the text for a

N =12, m =4 system with
10000 members; Zz is
defined in the text. Results are
shown for A/Ag =0 (solid
circles), 0.35 (open circles),
0.7 (solid diamonds), 1.1
(open triangles) and 1.8
(solid triangles). For A =0,
the distribution is
Wigner-Dyson like and it is
Gaussian like for A/Ag > 1.
Figure is taken from [20] with
permission from American
Physical Society
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minimum spin ground state whereas the exchange interaction (—52) tends to max-
imize the ground state spin. Competition between pairing and exchange interaction
is equivalent to competition between ferromagnetism and superconductivity [19].
Hence, it is imperative to study P (A,) with a Hamiltonian that includes mean field
one-body part, (random) two-body interaction, exchange interaction and pairing (de-
fined by H)). For small metallic grains, using a microscopic model with pairing
interaction, it was shown in [19] that P (A;) is bimodal when pairing interaction is
dominant whereas it is unimodal for strong exchange interaction. Same result is ex-
pected to follow from the extended EGOE(1 4 2)-s with H=H (A, A, Ap, As) given
by Eq. (7.1). As this ensemble is not analytically tractable to derive P(A>), numer-
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Fig. 7.6 Average peak spacing (A;) (a) as a function of exchange interaction strength Ag for
several values of pairing strength A, and (b) as a function of A, for several values of Ag, for
a 1000 member EGOE(1 + 2)-s ensemble, defined by Eq. (7.1), with £2 = 6. The curves in the
upper part correspond to m =4 (3 — 4 — 5) and those in the lower parttom =5 (4 - 5 — 6)
in (7.3). Figure is taken [12, 15]

ical calculations are carried out in [23] with focus on the strong interaction regime
using Ao = A1 = A > 0.3 in Eq. (7.1) and employing a fixed set of sp energies.

Figure 7.6a shows the variation of average peak spacing with exchange interac-
tion strength Ag for several A, values. The curves in the upper part correspond to
m = 4 and those in the lower part to m = 5. As the exchange strength increases,
the average peak spacing (A;) is almost same for odd-even-odd and even-odd-
even transitions. Value of average peak spacing and its variation with Ag is dif-
ferent for odd-even-odd and even-odd-even transitions when pairing correlations
are strong. The curve for fixed value of A, can be divided into two linear re-
gions whose slopes can be determined considering only exchange interactions, i.e.
Egy =Co — AsS(S + 1). For weak exchange interaction strength, ground state spin
is 0(1/2) for m even(odd) and thus for this linear region, (A>)/As ox —3/2(3/2).
The linear region where exchange interactions are dominant, (Aj)/As o —1/2 as
ground state spin is m /2. Figure 7.6b shows the variation of average peak spacing
with pairing strength for several Ag values. It clearly shows that the separation be-
tween the two modes of the distributions becomes larger with increasing A ,. These
results are in good agreement with the numerically obtained results for the P(A3)
variation as a function of A, and Ag as shown in Fig. 7.7. Similar results were re-
ported for small metallic grains in [19] where a microscopic model is employed. The
model with H defined in Eq. (7.1) thus explains the interplay between exchange (fa-
voring ferromagnetism) and pairing (favoring superconductivity) interaction in the
Gaussian domain and can be used for investigating in more detail various transport
properties of mesoscopic systems.

7.1.4 Induced Two-Body Ensembles

In the previous Sects. 7.1.1-7.1.3, we have shown that EE give generic description
of properties of mesoscopic systems where interaction effects are important. How-
ever, this description is good only in the g — oo (g is the dimensionless Thouless
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Fig. 7.7 P(Az) vs A, for various values of the pairing strength A, and exchange interaction
strength Ag for the same EGOE(1 + 2)-s system used in Fig. 7.6. The distributions P(A;) are
constructed (with bin size 0.2) by combining the results for A, with m =4 and 5. See text for
further details. Figure is taken from [23] with permission from Elsevier

conductance) limit. For (almost) closed diffusive or chaotic dots for example, g may
be large but finite. In this situation, strictly speaking one has to employ induced two-
body ensembles rather than EE(2) for the two-body part of the interaction. We will
discuss this aspect briefly in this section.

In general, for a disordered system (diffusive or chaotic quantum dot being an
example), H = h(1) 4+ V (2) where the one-body part 4(1) = Zi’j hija;raj is due to
the kinetic energy and the disordered potential and the V (2) matrix elements V;;y
are due to the screened Coulomb interaction. One can model the /;; matrix by one
of the classical random matrix ensemble (GOE or GUE or GSE) depending on the
symmetries. Diagonalizing each member of the ensemble gives the eigenbasis say
|a) for that member. By expressing V(2) in the (1) eigenbasis, we will have an
ensemble representation for V(2) with Vg,s random two-body matrix elements.
Thus, we have a induced two-body ensemble and adding to this the one-body part
h'(1) =", €alla, we have an induced EE(1 + 2). Statistical properties of Vg, s
(or Vgﬁy s for fermions with spin) will depend on (i) the invariance properties of
the h;; matrix (orthogonal or unitary or symplectic), (ii) the form of the two-body
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interaction and (iii) whether we have spinless fermions or fermions with spin de-
gree of freedom. For various choices of (i), (ii) and (iii), formulas, valid to order
1/ gz, are derived by Alhassid et al. [18] for the average and variance of Vygys.
Higher order (k-th order, k > 2) cumulants are expected to be ~1/g*. As Alhassid
et al. [18] add, “whenever an observable contains in addition to Vg, s’s other ex-
pressions which depend upon the |@)’s, the ensemble averages of this observable
taken over the induced two-body ensemble and over the full two-body ensemble
will differ”. Although, obviously induced EE(1 + 2) are more appropriate for meso-
scopic systems, they are not yet explored in any detail due to inherent difficulties
with these ensembles [18, 24].

7.2 Statistical Spectroscopy: Spectral Averages for Nuclei

EGOE(1 + 2) with or without spin generates three chaos markers as discussed in
Chaps. 5 and 6. These chaos markers provide the basis for statistical spectroscopy
where the forms generated by EGOE(1 + 2) for various smoothed densities, ignoring
fluctuations, are used to give a theory for calculating spectroscopic quantities such
as level densities, occupation numbers, transition strengths (such as dipole strengths
in atoms and Gamow-Teller strengths in nuclei) and so on. Statistical spectroscopy
is valid only in the A > A, region as here we can apply the average-fluctuation sep-
aration discussed in Sect. 4.3. With fluctuations following GOE, spectral averages
over a few spacings will smoothen the fluctuations and they will be close to the
actual values as GOE fluctuations are small in size (due to spectral rigidity). Re-
alistic systems such as atoms and nuclei carry orbital angular momentum besides
spin. Then, in L—S coupling the many particle (L, S) will be good and similarly in
Jj—J coupling only the total J (note that J=L+ .§) will be good. As EGOE(1 + 2)
results extend in many situations, as discussed in Chap. 6, to EGOE(1 + 2)-s, it is
plausible to argue that in general EGOE(1 + 2) results extend to subspaces defined
by good quantum numbers. With this, we can assume that the EGOE(1 4 2) forms
[similarly the EGOE(1 + 2)-s forms] for various densities apply to EGOEs with LS
and/or J symmetry (see Chap. 13 for some detailed discussion on EGOEs with an-
gular momentum J symmetry). Indeed, this has been assumed in nuclear structure
studies and verified in many numerical examples using nuclear shell model codes.
This approach is called spectral distribution theory in nuclear physics [10] and this
subject is being studied from early 70’s. Similarly, in the 90’s it was also shown
that same ideas will apply to atoms [25-28]. Here we will very briefly discuss the
EGOE based approach to nuclear level densities and orbit occupancies. Then, as a
detailed example, we will discuss the theory for transition strengths with applica-
tions to neutrinoless double beta decay (NDBD) nuclear transition matrix elements
(NTME).
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7.2.1 Level Densities and Occupancies

In spectroscopic studies, one is often interested in the energy region that is not too
far from the ground state. Although EGOE(1 + 2) gives Gaussian form for the state
densities I (E), this will not be useful as the convergence to Gaussian form is poor
for eigenvalues far removed from the centroid. Therefore, in practice it is more
appropriate to use strength functions or partial sums of them (called partial densities)
and use the results that they will be of Gaussian form for EGOE(1 + 2)’s in the
Gaussian domain (A > Ar) and intermediate to BW and Gaussian in the A, < A <
AF region. For EGOE(1 + 2), with m fermions in N sp states the basis states k

are nothing but the configurations m = (m, ma, ..., my) where m; is number of
fermions in the ith sp state; m; =0 or 1 and Y m; = m. Similarly for EGOE(1 +2)-
s, m = (my,my, ..., mg) where m; being the number of fermions in the ith sp level

(each double degenerate); m; =0or 1 or 2, Y m; =m and N = 2§2. Now, we have

"ME) = (sH-B)" =Y (st - D)’
= Y IME
PRSI E) o Y I, ,(E). (71.7)
Similarly,
mSE = (sH-EB)"* Z S(H — E))"
mes
FOOELDE SN S (B or YIS (E). (7.8)
mes mes

Note that the /™ are normalized to their respective dimensions and the correspond-
ing normalized pl,, ., is given by Eq. (5.27). Extending Eqs. (7.7) and (7.8) to
(m, L, S) or (m, J) spaces, it is possible to calculate level densities [in level densi-
ties the (2J + 1) or (2L + 1)(2S + 1) degeneracy factor is not counted] in nuclei
and atoms and apply them to data analysis. For simplicity let us consider only J
densities. Then, one can use Eq. (7.8) with J replacing S and evaluating the mo-
ments (HP)"/ p = 1,2 using exact methods, though they are cumbersome. This
approach has been used successfully recently for Horoi et al. [29-31] for lighter
(A < 80) nuclei. On the other hand, one can use Eq. (7.7) and then project out J
by using the so-called spin-cutoff factors. A variant of this approach was used by
French’s group for calculating level densities in medium-heavy and heavy nuclei
[10, 32, 33]. It is important to point out that the variances o2(m)=(H 2)% involve
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(we are dropping S or J in this discussion) both m — m [giving internal variance
o?(m — m)] and m — i’ with m # m’ [giving external variances o2 (m — m’)]
matrix elements of H. In general (7 — ') being non-zero as ’s are not good
symmetry subspaces of H. With (H ) defining the energy of the configuration m
[equivalent to the configuration centroids E.(m) = (H )’ﬁ], it is easily seen that the
variances will have contributions from both close by and distant configurations. The
later will produce large skewness and hence should be ignored are treated differ-
ently. For a proper statistical treatment of the (7’| H |7) matrix elements, it is nec-
essary to extend EGOE(1 + 2) to a partitioned EGOE(1 + 2) by associating an ad-
dition quantum number to distinguish close lying from distant configurations. This
rather complex EE will be discussed further in Chap. 13.

Occupation numbers determine the single particle/collective structures at low-
energies and the thermodynamic behavior at higher energies and hence their im-
portance in spectroscopy. A theory for occupancies follow from the fact that 7
are eigenstates of the number operators 7; [i = 1,2, ..., N for EGOE(1 + 2) and
i=1,2,...,8 for EGOE(1 + 2)-s]. Now, applying Eqgs. (7.7) and (7.8)

) I"'(E)
E — ,
(ni) = Z Im(E)mz(M)
m
EGOE(142): he<hzip, < Iy f(E)
— 4 T(E)ml(m)
m
EGOE(142): 2>Ap, TE)
. 7.
— ZI’"(E) m;(m) (7.9

and similarly,

(ni) &S

I"S(E)
ﬁ; s g™

EGOE(1+2)-S: x(<x<ka

Z BW w( ) I()’?i)

I S(E)
EGOE(142)-8: A>AF, I:,f“ (E)
= ; I;LS(E)mi(m). (7.10)

Note that: (i) in [34], the first form of (7.9) was employed with the smoothed / i (E)
constructed using a semi-classical theory for interacting spin systems; (ii) the second
form of Egs. (7.9) and (7.10), assuming that they extend to J spaces, was employed
by Flambaum for atoms [25]; (iii) the third form in Egs. (7.9) and (7.10), i.e. the
Gaussian domain result, was used for nuclei by assuming that they extend to good
J spaces [10]; (iv) forms in Eq. (7.10) are used in EGOE(1 + 2)-s analysis [35]
and they should be useful in the studies of mesoscopic systems; (v) it is easy to
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add the skewness and excess corrections to the Gaussian densities in Egs. (7.9)
and (7.10). More detailed discussion on the forms, as determined by the operation
of EGOE(1 + 2)’s, for occupancies and also for transition strength sums was given
in [36].

7.2.2 Transition Strengths: Simplified Form for One-Body
Operators

For EGOE(2), as shown in Sect. 4.4, transition strength densities take in general
bivariate Gaussian form. This result extends to EGOE(1 + 2) in the Gaussian do-
main while in the BW domain, as discussed in Sect. 5.4, bivariate t-distribution
given by Eq. (5.36) is appropriate. However in larger (m, N) spaces, just as with
level densities and occupancies, it is necessary to have a theory for strengths with
partitioning, i.e. with configurations 7. An essential complication here is that not
only the Hamiltonian operator but also a general transition operator & will break
the symmetry defining 72’s. A plausible way, as given first in [37], is to first con-
struct the transition strength density with H = i(1). Given a transition operator &
the exact form for the transition strength density with H = k(1) is,
DVxpy =@+ Y 3 gyl Gl v |

i, yi €M, yyEmyf, |

x 8(xi — el 1)8(xp —eliisl):  eliil=Y mg;. (7.11)

Here ¢; are sp energies. Note that 7 are eigenstates of (1). For operators & of
spherical tensor rank k, we have to apply Eq. (7.11) with & replaced by ﬁ;’i, sum
over all u and divide the result by (2k + 1). Also, note that we have dropped S and
it can be put back appropriately when needed. Expression for the matrix elements
[(m f, yf|ﬁl’j|n~1i, ¥i)|? for one and two-body operators is easy to write down and

therefore it is in general straightforward to construct / 2(1). Examples are discussed
ahead. Now we will switch on the interaction V (2) and as in Sect. 5.3.3 we assume
that the effective one-body part of V(2) is added to A(1) so that h(1) <> h and
V(2) <> V. Then, the role of V(2) is to locally spread Igl). The spreading function
(normalized) p}; has to be a bivariate distribution. Then the strength density will be
a convolution of / 2 and pg,

Y E LB = [ b ol (B - v - yydrdy. @12)

By putting 2 = 0 in Eq. (7.12), EGOE(1 + 2) — EGOE(2) and this gives, from
the results in Sect. 4.4, pg; to be a bivariate Gaussian in the Gaussian domain and
a bivariate ¢-distribution in the BW domain. The integral in Eq. (7.12) will be re-
placed by a summation when we employ Eq. (7.12) for p’é with partitioning. Then
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the marginal centroids, variances and the correlation coefficient of pg have to be

defined with respect to (1, ni ). As (V)™ =0, the marginal centroids of will be
zero. Similarly, in the binary correlation approximation as discussed ahead, it is
plausible that the variances are (Vz)ﬁ. However, for the correlation coefficient ¢,
theory with general partitioning is not available yet and therefore it has be assumed
to be a constant and it will be generated by V,

(o'vov)
= oV (7.13)

With all these, we have [37-39],

2 IPEN (Ep)
|<Ef|ﬁ|Ei>’ = Z Whmﬂﬁlmﬂ!

. PObiv- @(E,,Ef,E (), Ec(fi ), o (i), o (7 f), 0,
o (Ei )pJ(Ef)

(i ¢ Oi;) | = [d@m)d(my)]” Z|mf,a|ﬁ|m,,ﬂ>|.

(7.14)

Theory for transition strengths given by Eq. (7.14) was applied to a variety of prob-
lems in nuclear physics and they are listed in Table 7.1. Here below we will briefly
discuss a simplified form of Eq. (7.14) for one-body transition operators.

Given a one-body transition operator & = Za’ 8 80,/361;61/3, it is possible to sim-
plify Eq. (7.14) to a simple form that involves occupation probabilities and the sum-
mations all removed. The steps involved are: (i) evaluating |(m f|ﬁ 7)) gives the
(n,g(l - no,))’"’ term (after ignoring 8,p corrections) with 7, g1v1ng my /Ny and
N is the degeneracy of the sp orbit «; (ii) replace it by (fg(l — fig))Ei and this is
valid in the chaotic domain where occupancies vary slowly; (iii) assuming constant
spectral widths, i.e. o2in Eq. (7.14) do not depend on mi so that az(rﬁi) — ;2 and
o2(m ) — ﬁz; (iv) converting the sum over 7z; into an integral (note that for a
given (o, B) and m;, there is a unique 71 y). These will give the following compact
form [40],

2
(Ef|O|E:)|
N n WEiTm— _
= leapPlip (1 — 1)) DE))F (A= Ey — E; + 5 — 60,07, 7 Gbin)
(x’ﬁ
(7.15)
where
F(A,5.57,0) 1 o

,0i,0f, = exp — —5 —) —
\/27.[(0—1,2_’_@2_2§.Fiﬁ) 2(0;"+o0r°—20;0y)

(7.16)
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Table 7.1 Applications of the theory for transition strengths in nuclear structure

No. Topic Authors and references
1 Bound on time reversal J.B. French, V.K.B. Kota,
non-invariant part of A. Pandey and S. Tomsovic
nucleon-nucleon interaction Phys. Rev. Lett. 58 (1987) 2400
Ann. Phys. (N.Y.) 181 (1988) 235
2 Parity breaking matrix elements S. Tomsovic, M.B. Johnson,
in compound resonance region A.C. Hayes and J.D. Bowman

Phys. Rev. C 62 (2003) 054607

3 Single particle transfer V. Potbhare and N. Tressler
Nucl. Phys. A530 (1991) 171

4 Beta decay half lives and rates K. Kar, S. Sarkar and A. Ray
for presupernovae stars and APJ 434 (1994) 662
r-process V.K.B. Kota and D. Majumdar

Z. Phys. A351 (1995) 377
K. Kar, S. Chakravarti and V.R. Manfredi
Pramana-J. Phys. 67 (2006) 363

5 Giant dipole widths D. Majumdar, K. Kar and A. Ansari
J. Phys. G23 (1997) L41; G24 (1998) 2103

Equation (7.16) extends simply to the situation pp;,_o —> Ppiv—r With % changing
to [41],

v+1

_regh 1 [1 A2 ]—T
ﬁ]“(%) \/v(012+022—2§0102) v(012+022—2§0102) .

(7.17)
Equation (7.17) reduces to the result derived by Flambaum et al. employing the BW
form for the strength functions [25, 42]. Then, with v =1 in Eq. (7.17),

— 1 L+Ty

F(A, T, = — — 7.18
(A, I, T'r)pw 2% A+ (T + T4 (7.18)

where T} and F_f are the average BW spreading widths for the basis states over the
initial and final many-particle states respectively. It should be clear that (7.18) under-
estimates the transition matrix elements since it ignores the effects due to the bivari-
ate correlation coefficient ¢p;,, that appears in the full theory given by Eq. (7.14).
In a significant application in atomic physics, the strongly enhanced low-energy
electron recombination observed in Au®t was studied by Flambaum et al. [43]
using the theory given by Eqgs. (7.15) and (7.18) for transition strengths generated
by one-body operators and the operator involved here is the dipole operator. Sim-
ilarly, recombination of low energy electrons with U?8* has been studied in [44].
Equations (7.15) and (7.16) should be useful in the calculation of GT strengths in
nuclei.
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7.2.3 Neutrinoless Double-B Decay: Binary Correlation Results

Double-8 decay (DBD) is an extremely rare weak-interaction process in which two
identical nucleons inside the atomic nucleus undergo decay with or without emis-
sion of neutrinos. The neutrinoless double-8 decay (NDBD or Ovg™ 87), where two
neutrons change into two protons without emitting any neutrinos, is of fundamental
significance as its experimental confirmation will tell us about lepton number viola-
tion in nature and that the neutrino is a Majorana particle. In particular, experimental
value for NDBD half-life gives a value or a bound on neutrino mass [45] provided
the corresponding nuclear transition matrix elements (NTME) are obtained using a
reliable nuclear model. Thus, the focus in nuclear physics is to calculate NTME for
NDBD candidate nuclei. Half-life for NDBD, for the decay of a initial even-even
nucleus from its gs (with J" = 017") to the gs of the final even-even nucleus (with

J}T = O;), is given by [46]

2
[725(0F — 0%)]™ =GO”\MO”(0+)\2<M) : (7.19)

nme

where (m,) is the effective neutrino mass and G°” is a phase space integral (kine-
matical factor) [47, 48]. The M 0v is the NTME generated by the NDBD transition
operator &'(2 : Qv) and it is a sum of a Gamow-Teller like (M7 ), Fermi like (M)
and tensor (M) two-body operators. For the discussion in this section, explicit form
of the two-body operator &'(2 : Ov) is not essential except the property that this op-
erator changes two neutrons (n) into two protons (p). The NTME |M O"|2 can be
viewed as a transition strength (matrix element connecting a given initial state to
a final state by a transition operator) generated by the two-body transition operator
O'(2 : Ov). Therefore the transition strength theory given by Eq. (7.14) can be in
principle applied [49] by replacing 1 by proton-neutron configurations with fixed J
value so that /n; — (m , my);J; =0and m y — (mp,m,)rJ s = 0. Before proceed-
ing to implement this theory, it is essential to establish that the spreading function
p}} generated by V is of bivariate Gaussian form for £'(2 : Ov) type of operators. In
addition, we also need an expression for the bivariate correlation coefficient ¢ .

In order to establish that generically pg) is a bivariate Gaussian, formulas for the
first four bivariate moments (and cumulants) are derived (see Sect. 7.2.3.2 ahead)
for pgl‘;’.’:)n")"’(m”’m")f'H(Ei, Ey; Ef., ch, 0;,07, ), the spreading function defined
over proton-neutron spaces with H being a two-body Hamiltonian. Note that the
third and higher order cumulants are zero for a bivariate Gaussian. As appropriate
for heavy nuclei, H = H,, + Hy,, + Hp, and it preserves (m, my). Similarly, the
transition operator &’ changes (m, m,) to (m, + 2, m, — 2). For these types of H
and & operators, we need averages over the two-orbit configurations (m,, m,). For
generality, from now onwards in the reminder of this section, these are denoted as
(m1, my) with m being number of particles in the first orbit and m, in the second
orbit. In order to derive formulas for the bivariate moments of ,og, an extended
binary correlation theory for two-orbit configurations is needed (formulation given
in Chap. 5 and applied in Chaps. 5 and 6 is for a single orbit) and this is as follows.
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7.2.3.1 Basic Binary Correlation Results for Two-Orbit Configuration
Averages

Let us consider m particles in two orbits with number of sp states being N and N;
respectively. Now the m-particle space can be divided into configurations (m1, m»)
with m particles in the #1 orbit and m» particles in the #2 orbit such that m =
m1 + my. Similarly, consider H to be kp-body operator with fixed body ranks i and
J respectively in m| and my spaces such that (m, m») is preserved by H. Then the
general form for H is,

Hikmy= Y "G )]e] 0BGy ()620)- (7.20)

i+j=km;a,B,y,8

To proceed further, we will represent H by a EGOE ensemble such that vzﬂ vé @ j)
are independent G (0, v%{(i, J)) variables. Thus, the ensemble here is a two-orbit
EGOE(ky) or more precisely a EGOE(kg)-[U(N1) + U(N>)] ensemble with
U (N7) generating m and U (N3) generating m;. Now, in the dilute limit

(H2 (k)"

= > i) Y OBy (N82()B] (e ()83 (Nra ()™

i+j=ky o, B,y,68

= > v )Y (e]OAGOB O )" D (v (18208 (Nya())™
i+j=ky -} V.8

= > vy HT(m1, N1, DT(ma, Na, j). (7.21)
i+j=ky

Note that the function T is defined by Eqs. (4.12) and (4.13). Just as above, extend-
ing the single orbit results for product of four operator given in Sect. 4.2, formula
for (H(kr)G (kg)H (ki) G (kg))™1-™2 is,

(H (ki) G k) H (k) G (k)™ ™

— Z Z v} (i, Vg, u)

i+j=kpy.t+tu=kg ai,p1,y1,81,22,B2,v2,82
x (1 DB} Dy1 (18] () Br(et] (DS (D) ()™
x (02 () B3 ()2 )8 ) B2 (e (N2 yy )™, (7.22)

Here, G is a two-orbit EGOE(kg) just as H is a two-orbit EGOE(ky) and it is
assumed that the two EGOEs are independent. Applying Egs. (4.19) and (4.26) to
the two traces in Eq. (7.22) gives to leading order,
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(H k)G (ke H ki) G (ko)™

= > VGG W F i Ny i, OF(ma, Na, jou). (7.23)
i+j:k]-1,t+u:k(;

The F(---)’s appearing in Eq. (7.23) are given by Eqgs. (4.17) and (4.26). Combining
Egs. (7.21) and (7.23), we have

(H*(kp))™ ™

2
= 2[ Y vy, HT(my, Ny, )T (ma, Ny, j)}

i+j=kp

+ > v )R W Fmy, Ny ) F(my, Ny, jou). (7.24)
i+j:kH,t+u:kH

Formulation given here is applied in the next section.

7.2.3.2 Binary Correlation Results for the Bivariate Moments of
(my,mz),(my,m}):H
P o :biv

With space #1 denoting protons and similarly space #2 neutrons, general form of H
for the present purpose is given by Eq. (7.20) and it is represented by a two-orbit
EGOE(kp ) defined before. Similarly, transition operator & for the present purpose
is of the form,

Oko) =Y v} ko) (ko)o2(ke). (7.25)
¥.8

Note that k,; = 2 for NDBD (similarly, ks = 1 for 8-decay GT strengths). Again, &
is represented by a EGOE in the sense that v? are independent G (0, vzﬁ,) variables.
The operator H (kg ) preserves the two orbit configurations (m, m;) and & and its
hermitian conjugate 0% do not preserve (mp, my). However, the action of ¢ and
0" is simple giving O (kg)|m1, ma) = |m1 + kg, my —kg) and 07 (kg)|my, my) =
lmi — kg, may + kg). Thus, given a (m1, m2) for an initial state, the (m/, m}) for
the final state generated by the action of & is uniquely defined. Now, the transition
strength density /45 (E;, E y) and the corresponding bivariate moments are

(my.ma),(m’.mb):H

O:biv (Ei, Ef)

= 10 H(E 5 |((m), mb)E £| €| (my, ma) E:)|[7 1" (E;), (7.26)

1

Mpo((m1,m2)) =6 (ko) HO (kip) O k) HP (kpp)) ™™ (7.27)

Note that, M are in general non-central and non-normalized moments. Also, the
final configuration (m/,m}) is not specified in defining M as it is unique given a
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(m1, my). To apply BCA in the derivation of the formulas for the bivariate moments,
the EGOEs representing H (k) and & (k) are assumed to be independent. We will
begin with Moo (m1, m»).

Using Eq. (7.25) and applying the basic rules given by Egs. (4.6) and (4.7), we
have

Moo(m, m2) = (0% (k) O (k)™ ™

=3 {( Plslkom ko] ko)satk)™ ™
y,8

2 ﬁil my
=v . 7.28
7 <kﬁ> (k/f) (7:28)
Trivially, 1\7110(m1,m2) and MOlela my) will be zero as H (k) is represented by
a two-orbit EGOE(ky). Thus, Mpg(m1, mp) are cell~tral moments. Moreover, by

definition, all the odd-order moments are zero giving Mpg(my,mz) =0 for P 4 Q
odd. The next non-zero bivariate moment M1 is given by,

My1(my, my)

= (07 (ko) H (ki) 0 (k) H (ki)™

=5 > v} Dy, ko) (DB () y1 (ko) i (e ()™
ay,B1,02,82,71,82:i+j=ky
x (82(ke)aa () B3 ()85 (ko) B2 ()ees (D)™ (7.29)

Then, contracting over the 7y and 88T operators, respectively in the first and sec-
ond traces in Eq. (7.28) using Eqgs. (4.8) and (4.9) appropriately, we have

Miymim) =3 S v}, j)(’"}{ﬁ_ l) ('"2 - J)

i+j=kn ko
x T(my, N1, )T (ma, N2, j). (7.30)
Note that the formulas for the functions 7 (- - -)’s appearing in Eq. (7.30) are given

by Eqgs. (4.12), (4.13) and (4.14). Similarly, the functions F (- --)’s appearing ahead
are given by Eqs. (4.17) and (4.26). For the marginal variances, we have

MZO(ml, my) = (ﬁT(kﬁ)ﬁ(kﬁ)HZ(kH)y’llsmz

= Moo(my, mo)(H2 (k)" o)

Moz(ml ,mp) = (ﬁT (kﬁ)Hz(kH)ﬁ(kﬁ))ml’mz

~ koma—k
= MOO(ml,m2)<H2(kH)>ml+ o,
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In Eq. (7.31), the ensemble averages of H?(kp) are given by Eq. (7.21). Now, the
bivariate correlation coefficient p;y is
My (my, m2)
Cpiv(my,ma) = —= — . (7.32)
\/Mzo(ml, m2) Moz (my, m2)

Clearly, ¢p;, will be independent of vzﬁ.

Proceeding further, derived are formulas for the fourth order moments M PO-
P + Q = 4. Firstly, for (P Q) = (40) and (04), we have

1\740("11, myp) = (ﬁT(kﬁ)ﬁ(kﬁ)Hzt(kH))ml’mz

= Moo(my, ma)(H* (k)"

v (7.33)
Mos(my,mp) = (ﬁT (kﬁ)H4(kH)ﬁ(k(j)>ml’m2

~ koma—k
= Moo(ml,1712)(11’4(76H)>m1+ o,

In Eq. (7.33), the ensemble averages of H*ky) are given by Eq. (7.24). For
(PQ)=(31), we have

M1 (m1,m2) = (07 (kp) H (ki) O (k) H (ki)™ ™
= (0% (k) H (ki) O (k) H (k) H (k) H (k)™
e — R

+ (ﬁT(kﬁ)H(lkH)ﬁ(kﬁ)H(m’kH)>ml,mz

+(ﬁ*(kﬁ)H(lkH)ﬁ(kﬁ)H(lkH)H(lkH)H(IkH))’"'””2. (7.34)
I

First and last terms on RHS of Eq. (7.34) are simple as H |_|H can be taken out of
the average leaving with a term similar to M 11(m1, my). For the second term, the
0" and O operators are contracted across H operator using Eqs. (4.8) and (4.9) and
then one is left with an average of the form (HG HG). These will give the final
formula,
Ms1(my, m2)
=2(H2 (k)" M1y (m1, m2)

+(ﬁT(kﬁ)H(lkH)ﬁ(kﬁ)H({kH)L]m)[{(IkH))ml,mz

=2AH2(k))" " My (my.mp) + v Y v gt u)
i+j=kpg,t+u=kpy

my — j\ (M1 —i . .
x F(@my, Ny1,i,t)F(ma, N, j,u). (7.35)
ko ko
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Similarly, we have

Mi3(my, m2) = (67 (ko) H3 (ki) O (k) H (k)"

= (07 (ko) H (ki) H (ki) H (ki) 0 (ko) H (ki)™ ™

+ <ﬁT(kﬁ)H(kH)H(kH)H(kH)ﬁ(k/f)H(kH»m]’m2
|—'—| |

+ <ﬁ7(kﬁ)H(lkH)H(lkH)H(lkH)ﬁ(kﬁ)H(lkH»ml,mz
| I

= 2(H2(kH))m‘+kﬁ’mrkﬁlq11 (m1,m2)

+”% Z U%{(i,j)v%;(t,u)G(t,u)
i+j=kp . t+u=ky

(ko =140\ (mitkg 1
i i

8 (%2_M+kﬁ+j><m2—kﬁ—u>.
J j ’

nAi]—t my —u
G(t,u):( ko )( ko )T(ml,Nl,l)T(mz,Nz,u),

(7.36)

In Eq. (7.36), the first and last terms can be evaluated by first calculating the H?
average over the intermediate states |m1 + kg, m2 — k) and then the remaining part
is similar to M 11(m1, m2). Also, the second average is evaluated by first contracting
the two correlated H’s that are between &7 and & operators and then one is again
left with a term similar to 1\711 (m1, my). Finally, ]\lez(ml, my) is given by,

Mzz(ml ,mp) = (ﬁT(kﬁ)Hz(kH)ﬁ(kﬁ)Hz(kH)Y"l”"2

= (0% (kg)H (k) H (k) O (ko) H (k) H (k)" ™
L KH)H

+ (ﬁ(kﬁ)H(IkH)H(IkH)ﬁ(kﬁ)H(IkH)HﬁkH»ml,mz

+{07 (ko) H (ki) H (k) 0 ko) H (i) H (k)™
1

= A~400(m1, mz)(HZ(kH)>m1+kﬁ,mz—kﬁW
.. ﬁl—i—t my—u—j
+vzﬁ Z v%,(l,])u%,(t,@( . >< . )
i+j=ky t+u=kpg 4 o
x [F(my, N1, i, 0)F(ma, Ny, j, u)
+ T (my, Ni, )T (my, Ny, )T (m2, Np, )T (ma, Na,w)].  (7.37)
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In Eq. (7.37), the first term is evaluated by first calculating the H? average (for the
H? between 0" and € operators) over the intermediate state |[m| + kg, m> — k)
and then one is left with product of averages of H> and &7 & operators. For the third
term, first the &7 and & operators are contracted across H> operator and then we
are left with average of the form (H 2y x (H?). Similarly, for the second term, after
contracting the &' and & operators across H? operator, we are left with an average
of the form (H G HG). The results for the moments to fourth order given above are
reported first in [50].

7.2.3.3 Bivariate Cumulants for NDBD Nuclei

leen the M po(myi, my), the normahzed central moments Mpgp are Mpg =
M ro/ Moo Then, the reduced moments M po are

iy Mpgo(my,my)
9= [Maomy, ma) P2 Moz (my, m2)1072°

P+0>2. (7.38)

In terms of M po, the fourth order cumulants from Eq. (B.10) are

kao(my, mp) = Mag(my, ma) —3, koa(m1, ma) = Moa(my, ma) —

k31 (my, my) = My (my, ma) — 3Myy(my, my),
~ ~ (7.39)
ki3(my,mp) = My3(my,mp) — 3My1(m1, myp),

ko (m1, ma) = Moo (my, ma) — 21‘7112] (my,ma) — 1.

In order to obtain some insight into the values of the fourth order cumulants
and the bivariate correlation coefficient for NDBD nuclei, it is assumed that the
v%,(i, Jj)= v%, independent of (i, j) (note that kg = 2 and k» = 2 in NDBD appli-
cations). Then, ¢p;y and kpg, P + Q =4 are functions of only (mp, m,, Ny, N,)
and independent of both v%i and Vé. The &p;y and kpgp, P + Q =4 are calcu-
lated in [50] for several Ov8~ 8~ decay candidate nuclei using Egs. (7.28)—(7.37). In
these calculations, the function 7T (- - - ) is evaluated using Eq. (4.12) and the function
F(---) using Eq. (4.26). For example, for 1000, 139Nd and 238U nuclei, (ka0, ko4,
k13, k31, k2o) are (—0.45, —0.42, —0.24, —0.26, —0.20), (—0.27, —0.29, —0.22,
—0.20, —0.19) and (—0.18, —0.18, —0.15, —0.15, —0.13) respectively. These re-
sults clearly establish that bivariate Gaussian is a good approximation for Ov8~ ™
decay transition strength densities (for a good bivariate Gaussian, |kpg| < 0.3). It
is also seen from the numerical calculations that ¢p;, ~ 0.6-0.8. It is important to
mention that ¢;,, = 0 for GOE. Therefore, the transition strength density will be
narrow in the (E;, E y) plane. All these results show that, one can apply the formu-
lation given by Eq. (7.14) for calculating NTME for NDBD. However, in actual ap-
plications it should be recognized that the parent and daughter nuclear states carry
angular momentum J as a good quantum number. Therefore, we need |(EJy =
0|C|E; J; = 0)|? (for gs to gs transitions). Then, in order to apply Eq. (7.14),
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we need Ec((ﬁip’ my)i, Ji = 0), Ec(("?ipa ﬁin)fa Jr =0, U((ﬁpa my)i, Ji = 0),
o((mp,my)p, Jr=0), ((Mp,my) s =010|(mp, my)i J; = 0)|? and ¢p;y. In this
statistical procedure for NDBD NTME calculations, it is possible to assume that
Cpiv 18 a free parameter and its starting value can be taken from the binary corre-
lation theory. Exact calculations of the fixed-J averages is cumbersome (approx-
imations for fixed-J averages are discussed in Chap. 13). However, large scale
computer codes are developed recently by Sen’kov et al. [51] and they will give
E.((mp,my,),J =0)and o ((/ p,n,), J = 0) for medium mass nuclei (these codes
may need extensions for heavy nuclei). Also, the methods used by Sen’kov et al.
will allow one to derive formulas for [((7,,m,) ¢ Jr = 0|0 |(m p, my); J; = 0)|2.
With these, it is possible in the near future to apply the theory described in this
section to NDBD NTME calculations.
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Chapter 8
One Plus Two-Body Random Matrix Ensembles

with Parity: EGOE(1 + 2)-7

8.1 EGOE(1 + 2)-x: Definition and Construction

Parity ratios of nuclear level densities, i.e. ratio of number of positive parity states
and negative parity states in a atomic nucleus, is an important ingredient in nuclear
astrophysical applications [1]. It is possible to understand the general structure of
parity ratios by considering embedded random matrix ensembles generated by par-
ity (;r) preserving random interactions [2]. With parity, the sp space and the many
fermion spaces divide into positive and negative parity spaces. Therefore, we need
to start with say N number of positive parity (w = +) sp states and similarly N_
number of negative parity (w = —1) sp states. In the first step, one can ignore the
internal structure of the sp states in each 7 space although in nuclei there is a clear
separation of the 4+-ve and —ve parity sp levels. With Hamiltonian being a one plus
two-body operator preserving parity, the one-body part il\(l) is defined by N4 num-
ber of degenerate +ve parity sp states and N_ number of degenerate —ve parity sp
states with spacing between them is say A. Then we have N = N4 + N_ sp states.
The matrix for the two-body part V(2) will be a 3 x 3 block matrix in two particle
spaces as there are three possible ways to generate two particle states with definite
parity: (i) both fermions in +ve parity states; (ii) both fermions in —ve parity states;
(iii) one fermion in +ve and other fermion in —ve parity states. Figure 8.1 shows the
structure of H operator in the defining space. The matrices A, B and C in the figure
correspond to (i), (ii) and (iii) above respectively. For parity preserving interactions
only the states (i) and (ii) will be mixed and mixing matrix is D in Fig. 8.1. Note
that the matrices A, B and C are symmetric square matrices while D is in general
a rectangular mixing matrix. Consider N sp states arranged such that the states 1
to N4 have +ve parity and states N4 + 1 to N have —ve parity. Then the operator
form of H preserving parity is,

V.K.B. Kota, Embedded Random Matrix Ensembles in Quantum Physics, 183
Lecture Notes in Physics 884, DOI 10.1007/978-3-319-04567-2_8,
© Springer International Publishing Switzerland 2014
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H=h)+VQ);

Ny N
h(l) = Zeiﬁ)ﬁ,&) + Z 85._)1%5._); 81.(+) =0, 8;_) = A,
i=1 Jj=Ni+1
Ny
V() = Z (vkvg|V(2)|vivj)a;aZajai
ijk,l=1
(i<j,k<t)
N
+ > (vl V) vpvj)alala (8.1)
i/,j/,k/,ﬁ/:N++l
(@'<j' k' <)

N+ N
+ Z Z (])k// Ver | V(Z) | v \)j// )aZ,,aé,,ajuai//
i//’k//zl j//,Z”:N++1

N+ N

+ Y > [wrvolV@lvevs)apahasar +he.].
P,0=1 R,S=N,+1
(P<Q) (R<S)

In Eq. (8.1), v;’s are sp states, (... |V(2)| ...) are the two-particle matrix elements
and n; are number operators. From now on we will drop the hat over H, h and V
when there is no confusion. Note that the four terms in the RHS of the expression for
V(2) in Eq. (8.1) correspond respectively to the matrices A, B, C and D shown in
Fig. 8.1a. Many particle states for m fermions in the N sp states can be obtained by
distributing m; fermions in the +ve parity sp states (N4 in number) and similarly,
my fermions in the —ve parity sp states (N_ in number) with m = m| + m;. Let us
denote each distribution of m| fermions in N, sp states by m; and similarly, m;
for m; fermions in N_ sp states. Many particle basis defined by (mp, my) with m;
even will form the basis for +ve parity states and similarly, with m, odd for —ve
parity states. In the (mj, my) basis with m, even (or odd), the H matrix construction
reduces to the matrix construction for spinless fermion systems, i.e. Eq. (4.3) will
apply. Therefore it is easy to construct the many particle H matrices in +ve and
—ve parity spaces. The matrix dimensions d; for +ve parity and d_ for —ve parity
spaces are given by,

d, = Z d(Ny, N_:my,mp),

mi,mp(my even)

d = Z d(N4, N_:my, my); (8.2)

my,mp(my odd)

Ny [N—
d(Ny, N_:myi,my) = (mj> (m2>
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Fig. 8.1 (a) Parity preserving EGOE(1+2)-1t
one plus two-body H with a . _
sp spectrum defining /(1) _ N A D 0
along with a schematic form
of the V (2) matrix in the T
two-particle space. H= A
Dimension of the matrices A,
B and C are N4 (N4 — 1)/2, —— N o 0| C
N_(N-—1)/2,and NyN_, ) -
respectively. Note that DT is h(1) V(2)
the transpose of the matrix D. (a)
(b) H matrix foram =6

system. The upper 4 x 4

matrix corresponds to +ve

parity and the lower 3 x 3

) . . X (42 | P Q 0 0 0
matrix to negative parity. The
(m1,my) values for each of Y P' | (24) R 0 0 0
the diagonal block are shown
. . . T T
in the figures. Dimensions of z Q | R |(0F) | O 0 0
the matrices that correspond

0 0 0 o [(51) | u v

to the diagonal blocks and the
total matrix dimension are 0 0 U | 3,3) w
given by Eq. (8.2)

0 0 0 0 V' w' | (1,5)

(b) H(m=6)

The EGOE(1 + 2)-7 ensemble is defined by choosing the matrices A, B and C
to be independent GOEs with matrix elements variances vg, vl% and vf respectively
[2]. Similarly, matrix elements of the mixing D matrix are chosen to be indepen-
dent (independent of A, B and C matrix elements) zero centered Gaussian variables
with variance vﬁ. Without loss of generality we choose A =1 so that all the v’s
are in A units. This general EGOE(1 4 2)-7 model will have too many parameters
(v2,v2,v2,v3, Ny, N_,m) and therefore it is necessary to reduce the number of
parameters. A numerically tractable and physically relevant (as discussed ahead) re-
striction is to choose the matrix elements variances of the diagonal blocks A, B and
C to be same and then we have the EGOE(1 + 2)-7 model defined by (N4, N_, m)

and the variance parameters (7, o) where

2 2 2 2
U_a_v_b_i_rz v_d_oﬂ (8.3)
AT A2 A2 AT T '

Thus, for EGOE(1 + 2)-7

A:GOE(r?),  B:GOE(r?),  C:GOE(r?),  D:GOE(e?);

(8.4)
A, B, C, D are independent GOE’s.

Note that the D matrix is a GOE only in the sense that its matrix elements D;; are
independent zero centered Gaussian variables with variance o2, In the limit 7> — oo
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and o = 7, the model defined by Egs. (8.1), (8.3) and (8.4) reduces to the simpler
model analyzed in [3]. Figure 8.1b shows an example of the matrix structure of
EGOE(1 + 2)-m for a m = 6 system. Then the H matrix in 4ve parity space will be
a 4 x 4 block matrix with the four diagonal blocks mixed by the off-diagonal block
matrices X, Y, Z, P, Q and R as shown in the figure. Similarly, the H matrix in
—ve parity space will be a 3 x 3 block matrix with the three diagonal blocks mixed
by the off-diagonal block matrices U, V, and W as shown in the figure.

The smoothed +ve and —ve parity densities p/f' (E) are a sum of the partial
densities p"1"™2(E),

m I
PR(E) = (8(H — E)"™ = — 3 d(my.m)p"""(E):

mip,m2

(8.5)
p"™m2(E) = (8(H — E))"""™.

Note that the summation in Eq. (8.5) is over my even for 4ve parity density and
similarly over m, odd for —ve parity density. Also, we have dropped N4 and N_
ind(N4, N_,mi,m3). InEq. (8.5), pl (E) as well as p™1"""2(E) are normalized to
unity. However, in practice, the densities normalized to dimensions are needed and
they are denoted by I (E) and I"!"""2(E) respectively,

/
IY(E) =dypi(E) = Z 1M (E); ["M(E) =d(my, mp)p™ " (E).
mi,myp
(8.6)
In order to understand I (E) and hence the parity ratios, I™1!""2(E) are exam-
ined [2] via their moments M, (m1, mz) = (H?)"1-"2 using BCA for the two-orbit
averages given in Sect. 7.2.3.

8.2 Binary Correlation Results for Lower Order Moments
of Fixed-(m1, m,) Partial Densities

For the EGOE(1 + 2)-7 Hamiltonian, we have H =h(1)+ V(2)=h(1)+ X(2) +
D(2) with X(2) = A @ B @ C is the direct sum of the spreading matrices A, B
and C and D2)=D + D is the off-diagonal mixing matrix. Here, D =D is the
transpose of the matrix D. Denoting +ve parity sp space by #1 and —ve parity sp
space by #2, operator form of D is

DR =Y vhy 52), (8.7)
y,0

with [vgg]2 = sz = 2. From now on, we will denote X (2) by X and D(2)

by D. Note that the operator form of X is given by Eq. (7.20) and [v?‘(ﬁ vé (i, N> =
vi(i, Jj) = 72 with i + j =2. Also, k(1) conserves (m1,m>) symmetry while X
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preserves (m1, my) symmetry. Using all these, results in Sect. 7.2.3 are applied to
derive formulas for M, (m, m;) with r < 4. These results will be good in the dilute
limit defined by m, N1, my, N — oo, m/N1 — 0 and m/N, — 0 with m =m or
m = my. The first moment M| (m, m;) of the partial densities p™!""*2(E) is triv-
ially,

Mi(my,ma)=((h+ V)" =m, (8.8)
as (h")™1>"2 = (my)" and (V)12 = (. The second moment M is,

mip,mz

My(my,mp) =((h+V)?)

(V2" = (x2)""" 4 (DDymm2 4 (DDym-m2, 8.9)

(X2 = 12 Z T(m1, N1, i)T (m2, Na, j),
i+j=2

(DD)mim =a2<ml)(ﬁ2>, (DD)ymm> zaz(’%l><m2>.
2 2 2 2

The second line in Eq. (8.9) follows by using the fact that X (2) and D(2) are in-
dependent and D(2) can correlate only with 5(2). In Eq. (8.9), the expression for
(X2Zym1.m2 follows directly from Eq. (7.21). The last two equations in Eq. (8.9) can
be derived using Eq. (8.7) that gives the definition of the operator D(2) and Egs.
(4.6) and (4.7) appropriately to contract the operators ¥ with y and 8 with §'. For
the T(---)’s in Eq. (8.9), Eq. (4.12) is used. Note that, Eq. (8.9) gives the binary
correlation formula for 62(m, m;). Similarly, the third moment M3 is

mi,mj

M3(my,mz) = ((h+ V)3

= (B3 2 pymma(y 2T L XX

+ (DhD)m1-m2 4+ (DR D)™1-ma

= (m2)® + 2my (V2" X2
+ (ma +2)(DD)™1-m2 + (my — 2)(DD)"m2. (8.10)

In Eq. (8.10), the last three terms on the RHS are evaluated by using the following
properties of the operators X, D and D,

XQ)lmy, my) — |my,ma),  DQ)my,ma) — |my +2,my —2), S
DQ2)|my, ma) — |my — 2, may +2). ’
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Also, the fixed-(m1, m>) averages involving X2, v2, DD and DD in Eq. (8.10)
follow from Eq. (8.9). Now, the formula for the fourth moment My is,

Ma(my, ma) = ((h + V)"

_ (h4)m],m2 + 3<h2>7rl|,mz<vz>w+ <h2>m1’m2<X2)W

+(DR2D)""™ 1 (Dh2D)"""™ 4 2(hX X"

+ 2(hDh5>m1,mz + Z(hBhD)mlsmz + (V4>m1,m2
= (m2)* + 3m) (V2" 4 (X2
+ (ma + Z)ZW + (my — 2)2W

+ 2(m2)2<X2>m] 2 4 dma(my + Z)W

+2ma(my — 2)(DDymima 4 (V4" "2, (8.12)

The first term in Eq. (8.12) is trivial. The next two terms follow from Eq. (8.9). The
terms 4-8 in Eq. (8.12) are also simple and they will follow from Eq. (8.11). The
expression for (V#4)™1.m2 which is non-trivial, is,

(V4TI = (x4 g 3(x 2" D Dymima 4 (D Dymim2 )

+(Dx2D)"""™ 4 (DX2D)""™

+2(XDXDymm2 4 2(X DX Dymm2 4 (D + D)™™,
(8.13)

The formula for the first term in Eq. (8.13) follows from Eq. (7.23),

<X4)m1,mz _ 2{<X2>m1,mz}2 + T],

8.14
Ti=t* ) F(mi,Ni,i,0)F(ma, Ny, j,u). (®19
i+j=2,14u=2
Combining Egs. (8.13) and (8.14), we have,

= 2{(X2>m1,m2}2 + Tl —+ 3(X2)m1,m2{<D5>m1,m2 + (5D)m1’m2}

+{(px2D)""™ 4 (Dx2D)"""?}

+2{(XDX D)mm2 4 (X DX D)ym-m2} 4 ((D + D))"

= 2{(X2>m1,m2}2 + 3(X2>m1,m2{<D5>m1,m2 + (5D)m1,m2}
+T1+T>+ 215+ Ty (8.15)



8.2 Binary Correlation Results for Lower Order Moments 189

To simplify the notations, we have introduced 77, 77, T3 and 74 in Eq. (8.15). The
first and second terms in the RHS of the last step in Eq. (8.15) are completely de-
termined by Eq. (8.9). Also, expression for 77 is given in Eq. (8.14). Now, we will
evaluate the terms 75, T3 and 7y. Firstly, using Eq. (8.11), we have

T = (DX25)m1,mz + <5X2D)m1,m2
— [(DDymm ) {(x2)" 24
+ [(Bopm) ey ) o

Formulas for the averages involving X2, DD and DD in Eq. (8.16) are given by
Eq. (8.9). Using Egs. (4.8) and (4.9) appropriately to contract the operators D
with D across the operator X along with the expression for (X2)™1-m2 in Eq. (8.9),
we have

T3 = (XDXD)"m2 4 (X DX D)m1-m2

22 my—i\ (my—j my—i\(my—j
_”‘.Z[( 2 )( 2 >+< 2 >< 2 ﬂ
i+j=2
x T(my, N1,i)T (mp, Na, j). (8.17)

Similarly, the expression for 7y is

Ty = (D + D)¥""™

Z(Dzﬁz)ml,mz +<52D2)m1’m2+(D5D5>’""m2

+(DDDD)m-m2 + (DD2D)"""™* + (DD2D)""™. (8.18)

As D can correlate only with D in leading order, we have

my,my __

(D2D2) = (DDDD)m1-m2 4+ (DD DD)m-m2
| -

—o' Y (r @50 Q@8N @0}k @)
y,8,K,1m

+ot D (v @86@k{ @m@)n] @K @82y @)""™
y,8,K,1m

=a* Y (¥ @k @1 @1 @) (22m(2)8] )0} ()"
v.8.6,1

+at Y (] @k @k @1 @) (82m )0} (28] )"
V’S'K’ n
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=20 (1 QK] @K1 @ @) Y (B22m @)1} @8] @)™

VK 3,n

=2(DD)mi-m2 (D Dymi—2.ma+2, (8.19)

In order to obtain the last step in Eq. (8.19), the operators x 'k and y Ty are con-
tracted using Eq. (4.6) that gives (%) and (') respectively. Similarly, con-

tracting operators nn' and 88" using Eq. (4.7) gives (’%2272) and ("Zz) respectively.
Combining these gives the last step in Eq. (8.19). Also, the third binary pattern
(DD55)m1v’"2 with the two D’s correlated (similarly the two 5’5) is not consid-
ered as it will be 1/Nj or 1/N, order smaller compared to the other two binary

patterns shown in Eq. (8.19). Similarly, the other terms in Eq. (8.18) are

(D2D2)™"™ = (DDDD)m-m2 + (DD D Dym-m2
I_{:,_J

— 2<5D>m1,m2 (5D)ml+2*m2_2,

(DDDD)™m-m2 = (DDDD)™-m2 + (DD D D)mi-m
L L

— {(Df))ml,mz}z + <D5)m1,m2 (5D)m1_2*’"2+2,

(DDDD)mm2 = (DDDD)™-m2 4 (DD DD)mm
ol o il

(8.20)

= 2(DD)m-m2 (D D)mim2,

(DDDD)m1-m2 = (DDDD)™-m2 4 (DD D D)mi-m
L1 L

— 2<D5>m1,m2 (BD)”””"Z,

(DDDD)™-m2 = (DDDD)™-m2 + (DD DD)m1-m
L L I_i:,_l

— {<5D)m1,m2}2 + (5D)’”1’m2 <D5>m1+2,m2—2_

Combining Egs. (8.18)—(8.20), we have

Ty = {(DD)ym-m ) + {(DD)ym-m2 )

+ <D5>m1,m2 [2<D5>m1—2,m2+2 + (5D)m1—2,m2+2]

+ <5D>m|,m2 [2<5D>m1+2,m2—2 + (Dﬁ)m1+2,m2—2]

+4{(DDym-m2} {{DD)ym1-m2}. (8.21)
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Finally, combining Egs. (8.12), (8.14), (8.15), (8.16), (8.17) and (8.21), expression
for the fourth moment is,

Ma(m1, m) = (m2)* 4 3(ma)* (V""" 4+ 3(mp)?(x2)""2
+ (ma +22(DDY"" + (my — 2> (DDymm

+ 2ma(my + 2)(D D)™z + 2ma (my — 2)(D Dymi-m2

+2{(X2)m1’m2}2+3(X2)m1’m2{(D5)m1”"2+<5D>m"m2}

+7t Y F(miNi.i.O)F(mp. Ny, j.u)
i+j=2,14u=2

+ {(DDymma ) {(x2)m 22
1 ((BDymma ) {(x2)" 1272

e £ [ ()

itj=2
x T(my, Ni,i)T (m2, N2, j)

+{(DD)ymm2}? 1 ((DDym-m2)?

+ (Dl~))m1’m2 [2<D5>m172,m2+2 + (5D>m1—2,m2+2]

+ <5D>m1,m2 [2<5D)m1+2,m272 + (D5)m1+2,m272]

+4{(DDym1-m2} [(DDym1.m2}, (8.22)

Equations (8.8), (8.9), (8.10), and (8.22), respectively give the first four non-central
moments [M(my, my), Ma(my,m3), M3(my,mo) and Ms(my,m3)]. In applying
Eq. (8.22), the function T (- - - ) can be calculated using Eq. (4.12) and similarly, the
function F'(---) using Eq. (4.17) or Eq. (4.26). Formulas for the first four cumulants
[Ki(my,m>), Kry(mi,m3), K3(my,ma), K4(my,mp)] in terms of the non-central
moments are [4],

Ki(my,mp) = Mi(my, my), Ka(my, ma) = Ma(my,mp) — Mi(my, my),
K3(mi1,my) = M3(my, ma) — 3Ma(my, ma)Mi(my, mp) +2M3 (my, m2),
Ky(m1,ma) = Ma(my, my) — 4M3(my, ma) My (my, ma) — 3M3 (my, m2)

+ 12My(m 1, ma) M (m1, my) — 6M} (m1, my).
(8.23)
Then, the skewness and excess parameters are

K3(my, m2) K4(my,mp)

, , = — 8.24
Komy,mppr ) =pe o e &

yi(my, my) =
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After carrying out the simplifications using Egs. (8.8), (8.9), (8.10), (8.22) and
(8.23), it is easily seen that,

2((DDym-m: — (DDymi-m]
{(Dﬁ)thnz + <5D)m1,mz + <X2>m1,m2}3/2'

yi(my,mp) = (8.25)

Thus, y; will be non-zero only when o # 0 and the T dependence appears only in the
denominator. Also, it is seen that for Ny = N_, y1(m1, mp) = —y1(mo,my). The

expression for y» is more cumbersome. Denoting D = (Dﬁ)ml my D= (5D)’”1 2
and X = (X2)m1.m2 for brevity, we have

Ty +To +2T3 + Ty + (D + D)(4 — X) — 2(D + D)?
(D+D+ )2 '

v2(mi,mp) + 1= (8.26)

The formulas for T’s, D, D and X given before together with Eq. (8.26) show
that, for Ny = N_, yo(my, mp) = ya(ma, my). With, Ty ~ X2 + Cy, T, = T3 ~
X (D + D) and T4 ~ 3(D + D)? + C, which are good in the dilute limit (|C1/T}|
and |Co/ T4| will be close to zero), we have

Ci+Cy+4(D+D)
D+D+xP2

v2(my, mp) = (8.27)

Note that C; and X depend only on t. Similarly, C, D and D depend only on
«. The (5 + D) term in the numerator will contribute to y»(m1, m2) when T =0
and « is very small. The approximation 7, = T3 ~ X (D + D) is crucial in ob-
taining the numerator in Eq. (8.27) with no cross-terms involving the o and t
parameters. With this, we have k4 to be the sum of k4’s coming from X (2) and
D(2) matrices [note that, as mentioned before, X(2) = A ® B ® C and D(2) =
D @ D]. Equation (8.27) shows that, for « < t, y2(my, ma) = Cy/[(X2)m-m2]?
with C; ~ —9t*N*m3/16 for m; = m» = m/2 and N = N» = N. Evaluating
(X2)ym1.m2 in the dilute limit then gives y» ~ —4/m. Similarly, for T < o, we have
ya(mi, ma) = Co/[(DDYymvm2 4+ (DD)ym1-m212 with Cy ~ —a*N*m3/16 and this
gives y» ~ —4/m. Therefore, in the 7 < « and 7 > « limit, the result for y» is
same as the result for spinless fermion EGOE(2) and this shows that for a range
of (r, ) values, p"!"""2(E) will be close to Gaussian. Moreover, to the extent that
Eq. (8.27) applies, the density p™!""2(E) is a convolution of the densities generated
by X (2) and D(2) operators. Finally, the binary correlation results for y;(m, &)
and y2(m, &) of I (E) are found to be close to the exact results obtained using the
eigenvalues from EGOE(1 + 2)-7 ensembles in a number of numerical examples;
see [2] for details.
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8.3 State Densities and Parity Ratios

In order to carry out numerical calculations for state densities and parity ratios,
it is necessary to have a physically meaningful range of values for the param-
eters (t,o,m/Ny, N;y/N_) defining EGOE(1 + 2)-w. For A = 20-80 nuclei,
A = 3-5 MeV is reasonable and this along with realistic nuclear effective inter-
actions in sdfp and fpgy,> spaces give Ny /N_ ~ 0.5-2.0, T ~ 0.09-0.24 and
o ~ (0.9-1.3) x t. These deduced values of @ and t clearly point out that one has
to consider the more general EGOE(1 + 2)-7 defined by Eq. (8.4). Also, m < N4
or N_, whichever is lower. Following all these, numerical calculations are carried
outin [2] using T =0.05,0.1,0.2,0.3, ¢/t =0.5,1.0,1.5and N = N + N_ < 16.
Also, values of m are chosen such that m << N as in the dilute limit it is possible to
understand the ensemble results better.

8.3.1 Results for Fixed-Parity State Densities

Figures 8.2 and 8.3 show results for fixed-parity ensemble averaged eigenvalue
(state) densities I+ (E) = ((§(H — E)))*. Combining all E = [E — E.(m,%)]/
o (m, ) values and using a bin-size AE = 0.2, histograms for /1 (E) are gen-
erated. It is seen that the state densities for T > 0.1 are unimodal and close to
a Gaussian (multimodal for small t values). For V (2) = 0, the eigenvalue densi-
ties will be a sum of spikes at 0,2A,4A, ... for 4-ve parity densities and similarly
at A,3A,5A, ... for —ve parity densities. As we switch on V (2), the spikes will
spread due to the matrices A, B and C in Fig. 8.1 and mix due to the matrix D. The
variance 62(m1 , my) can be written as,

o2 (my, my) = o> (my, my — my,my) +o>(my,my —my £2,myF2). (8.28)

The internal variance o2(m;, my — mj, ms) is due to A, B and C matrices and
it receives contribution only from the t parameter. Similarly, the external variance
o(my,my —> my £2,m» F 2) is due to the matrix D and it receives contribution
only from the o parameter. When we switch on V(2), as the ensemble averaged
centroids generated by V(2) will be zero, the positions of the spikes will be largely
unaltered. However, they will start spreading and mixing as t and « increase. There-
fore, the density will be multimodal with the modes well separated for very small
(r,a) values. As T and « start increasing from zero, the spikes spread and will
start overlapping for o (m1, my) 2 A. This is the situation with T = 0.05 shown
in Fig. 8.2. However, as 7 increases (with o ~ 1), the densities start becoming uni-
modal as seen from the T = 0.1 and 0.2 examples in Figs. 8.2 and 8.3. As the particle
numbers in the examples shown in Figs. 8.2 and 8.3 are small, the excess parameter
ya(m, ) ~ —0.7 to —0.8 (skewness parameter y;(m, ) ~ 0 in all our examples)
and therefore, the densities 7+ (E) show some deviations from Gaussian form. The
smoothed +ve and —ve parity densities are a sum of the partial densities p"*!""2(E)
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Fig. 8.2 Positive and negative parity state densities for various (r,«) values for
(N4, N_,m)=(10,6,5) and (6, 10, 5) systems. Histograms are numerical ensemble results. The
dashed (red) curve corresponds to Gaussian form for p”!""2(E) in Eq. (8.6) and similarly, solid
(green) curve corresponds to Edgeworth corrected Gaussian form with y; (m 1, m>) and y2(m1, m3)
formulas given in Sect. 8.2. Figures are taken from [2] with permission from American Physical
Society
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(N,,N_,m)=(8,8,6)
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Fig. 8.3 Positive and negative parity state densities for various (r,«) values for
(N4, N_,m) = (8,8, 6). Smoothed curves (solid red lines) are obtained using fixed-(m, m,) par-
tial densities and the final state densities are close to Gaussian in form. Figure is taken from [2]
with permission from American Physical Society

as given by Eq. (8.6). It is clearly seen from Figs. 8.2 and 8.3 that the sum of par-
tial densities, with the partial densities represented by ED corrected Gaussians, de-
scribe extremely well the exact fixed-7r densities in these examples. Therefore, for
the (7, a) values in the range determined by nuclear sdfp and fpgy/> interactions,
ie. T ~0.1-0.3 and o ~ 0.57-27, the partial densities can be well represented by
ED corrected Gaussians and total densities are also close to ED corrected Gaussians.
On the other hand, for t <« 0.1 the sum of ED corrected partial densities still give
a good representation of I (E) as seen from Fig. 8.2. It is possible that the agree-
ments in Figs. 8.2 and 8.3 may become more perfect if we employ, for the partial
densities, some non-canonical forms defined by the first four moments as given for
example in [5, 6]. However, these forms are not derived by solving EGOE(1 +2)-7.

8.3.2 Results for Parity Ratios

Results for parity ratios I (E) /I (E) are given in Figs 8.4 and 8.5. As parity ratios
need to be calculated at a given value of the excitation energy E, the eigenvalues
in both +ve and —ve parity spaces have to be measured with respect to one gs
energy Egg. In the results presented in Figs. 8.4 and 8.5, Eg is determined by tak-
ing all the +ve and —ve parity eigenvalues of all the members of the ensemble
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Fig. 8.4 Parity ratios for
various (t, ) values for

(N,,N_m)=(8,8,4)

8 EGOE(] + 2) with Parity

(N,,N_m)=(10,6,4)

T T T T
1=0.1,0=0.51

1=0.1,0=0.51

(N4, N—,m)=(8,8,4) and
(10, 6, 4) systems. Figure is

. 2

taken from [2] with r r 7
permission from American - ! K i
Physical Society (Color figure Tr i L J
online) C 7] L J
O o 5 CE——t———
H 1=0.2,0=0.57 B F | 1=0.2,0=0.57 3
o [ ] o [ ]
1k ] 1 b ]
uw [ ] [ ]
= [ ] L ]

@ ettt et

_\

N
T
N
1

1=0.1,0=1.51 1=0.1,0=1.57

1=0.2,0=1.5T 1=0.2,0=1.51

(E-E o,

and choosing the lowest of all these as E,;. Similarly, the ensemble averaged to-
tal (+ve and —ve parity eigenvalues combined) spectrum width o; of the system is
used for scaling. Thus, the variable used is E = (E — Egy)/0;. Starting with Ejg
and using a bin-size of AE = 0.2, the number of states I (E) with +ve parity and
also the number of states /_(E) with —ve parity in a given bin are calculated and
then the ratio /_(E)/I;(E) is the parity ratio. Note that the results in Figs. 8.4
and 8.5 are shown for E = 0 — 3 as the spectrum span is ~5.50;. To go beyond
the middle of the spectrum, for real nuclei, one has to include more sp levels (also
a finer splitting of the +ve and —ve parity levels may be needed) and therefore,
N4 and N_ will change. Continuing with this, one obtains the Bethe form for nu-
clear level densities [7]. General observations from Figs. 8.4 and 8.5 are as fol-
lows. (i) The parity ratio /_(E)/I;+(E) will be zero up to an energy Eo. (ii) Then,
it starts increasing and becomes larger than unity at an energy E,,. (iii) From here
on, the parity ratio decreases and saturates quickly to unity from an energy E;. In
these examples, Eg < 0.4, E,;, ~ 1 and E; ~ 1.5. It is seen that the curves shift to-
wards left as 7 increases. Also the position of the peak shifts to much larger value
of E,, and equilibration gets delayed as « increases for a fixed t value. Therefore
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Fig. 8.5 Parity ratios for 15 w w w w
various (7, «) values and for (N,,N_m)=(8,8,5) (N,,N_m)=(8,8,5)
various (N4, N_,m)
systems. Filled squares
(brown) are obtained using
ED form for fixed-(m, my)
partial densities. In
calculating y» of the partial
densities, function F(---) is
needed [see for example
Eq. (8.14)] and here the
finite- N formula given

by (4.26) is used. Figure is <
taken from [2] with E
permission from American = 05 (N,,N_m)=(8,8,6) (N,,N_,m)=(10,6,6)
Physical Society (Color figure =02 0=0.51 =01 o=1.5t

online) , ,

05 NNm=(068) T (NN_m)=(6,10,6) |
1=0.2 o=0.51 1=0.1 0=0.51
0.0 ‘ ‘ ‘ ‘
0 1 2 1 2 3
(E-E o,

for larger 7, the energies (Eg, E,;,, E1) are smaller compared to those for a smaller 7.
The three transition energies also depend on (N4, N_, m). This general structure of
the parity ratios will remain same even when we change A — —A (i.e. —ve parity
sp states below the +ve parity sp states). General structures (i)—(iii) are also seen
in the numerical examples shown in [1] where a method based on the Fermi-gas
model has been employed. If o, ~ 6-8 MeV, equilibration in parities is expected
around £ ~ 8-10 MeV and this is clearly seen in the examples in [1]. It is also
seen that the equilibration is quite poor for very small values of T and therefore
comparing with the results in [1], it can be argued that very small values of t are
ruled out for atomic nuclei. Hence, it is plausible to conclude that generic results
for parity ratios can be derived using EGOE(1 + 2)-7 with reasonably large (7, o)
values.

Turning to prediction of parity ratios, it is of interest to compare the numeri-
cally calculated parity ratios with those obtained using the ED form for p™1:"2(E).
Some results for this are shown in Fig. 8.5. Here, starting with the absolute ground
state energy Eg and using a bin-size (in Fig. 8.5, AE = 0.2), +ve and —ve par-
ity densities in a given energy bin are be obtained using the smoothed /*(E) and
their ratio is the parity ratio at a given E. The smoothed /* (E) are constructed us-
ing the first four moments of p™!"2(E) and Eq. (8.6). In the examples shown in
Fig. 8.5, I and I_ are close to Gaussians. It is seen that the agreement with ex-
act results is good for E > 0.5. However, for smaller E, to obtain a good agree-
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ment one should have a better prescription for determining the tail part of the
p"-"2(E) distributions. Developing a theory for this is an important problem for
future.
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Chapter 9

Embedded GOE Ensembles for Interacting
Boson Systems: BEGOE(1 + 2) for Spinless
Bosons

In Chaps. 4-8 EE for fermion systems are discussed in detail with analytical and
numerical results. In the present chapter and the next chapter, we will consider
EE for finite interacting boson systems (called BEE with ‘B’ for bosons). Unlike
for fermion systems, for fixed number (N) of sp states, boson number m can in-
crease beyond N and therefore a dense limit with m — oo (complete definition
given ahead) is possible and this is one new aspect of boson systems. Also, BEE are
important because of the increasing interest in investigating (using experiments and
theory) BEC and quantum gases in general. As Asaga et al. state [1]: In an atomic
trap, bosonic atoms occupy partly degenerate single particle states. The interaction
will lift the degeneracy. A random matrix approach should reveal the generic fea-
tures of the resulting system. In addition, BEE are also important in understanding
certain aspects of the Interacting Boson Model (IBM) of atomic nuclei [2-5]. To get
started with BEE, we will first consider BEGOE(1 + 2) for spinless boson systems
in this chapter.

9.1 Definition and Construction

The BEGOE(2)/BEGUE(2) ensemble for spinless boson systems is generated by
defining the two-body Hamiltonian H to be GOE/GUE in two-particle spaces and
then propagating it to many-particle spaces by using the geometry of the many-
particle spaces [this is in general valid for k-body Hamiltonians, with k < m, gener-
ating BEGOE (k)/BEGUE(k)]. Consider a system of m spinless bosons occupying
N sp states |v;), i =1,2,..., N; see Fig. 9.1. Then, BEGOE(2) is defined by the
Hamiltonian operator,

(v H2)|vivj)

vi<vjue<v 4/ (14 8;;) (1 + 8k1)

V.K.B. Kota, Embedded Random Matrix Ensembles in Quantum Physics, 199
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Fig. 9.1 Some m boson configurations or basis states for m = 10 spinless bosons in N =5 sp
states. Enumeration of the configurations is similar to distributing m particles in N boxes with the
conditions that the occupancy of each box lies between zero and m and the maximum number of
occupied boxes equals m. In the figure, (a) corresponds to the basis state |(v; )10y, (b) corresponds
to the basis state |(v1)6(vz)3V3), (c) corresponds to the basis state |(v1)2(112)2(113)2(1)4)2(1)5)2) and
(d) corresponds to the basis state [va(vs)?)

with the symmetries for the symmetrized two-body matrix elements (v v; |ﬁ 2)|viv;)
being,

v | HQ) [ vjvi) = (v | HQ) | viv;),

. R 9.2)
(v | H(2) [vivy) = (vivj | H(2) | vevy).

Note that |v;v;) denote two-boson symmetric states. The action of the Hamilto-
nian operator defined by Eq. (9.1) on an the basis states, defined by distributions
of bosons in the sp states as shown in Fig. 9.1, generates the H matrix in m-boson
spaces. Note that b,, and bI,_ in Eq. (9.1) annihilate and create a boson in the sp state
|vi), respectively. The Hamiltonian matrix H (m) in m-particle spaces contains three
different types of non-zero matrix elements and explicit formulas for these are [6],

< 1_[ (Vr)nr

r=i,j,...

HQ)

i(nj— i 5

r=i,j,...

<(v,-)""—1<v,->"f“ [T o
r'=k,l,.

i>j

H(Q2)

[1 (vr)"'">

r=i,j,...

1/2 R
] (virvj | H (2)[vgrvi), 9.3)

_ Z["i(nj + D (g — 8i)?
oL (L8 (T + 6 )
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I1 (vr)"f>

r=i,j,...

<(w)"f+1(vp"f“(vk)"k—l(w)"f—l [T o |H@

r'=m,n,...

:[nﬂnr—&0Mi+1an+1+5u)

1,2 R
(1 +8;))(1 + 1) :| (vivi|H(2)|vgvr).

Note that all other m-particle matrix elements are zero due to two-body selection
rules. In the second equation in Eq. (9.3), i # j and in the third equation, four
combinations are possible: () k=1, i =j, k#i; () k=1,i# j, k#i, k#
Jy Qi) k#l,i=j,i#k,i#I;and (iv) i # j # k # [. BEGOE(2) for spinless
boson systems is defined by Eqgs. (9.2) and (9.3) with the H matrix in two-particle
spaces represented by GOE(v?). Now the m-boson BEGOE(2) Hamiltonian matrix
ensemble is denoted by {H (m)}, with {H(2)} being a GOE. Note that the H (m)
matrix dimension is

94

(N m) — <N+m - 1)

m

and the number of independent matrix elements is dp (N, 2)[dp(N,2) 4+ 1]/2. The
subscript ‘b’ in dp (N, m) stands for ‘bosons’. Using Eqgs. (9.2) and (9.3) with GOE
representation for H in two-particle spaces, computer codes have been developed
for constructing BEGOE(2) ensemble [7].

Extension of BEGOE(2) to BEGOE(1 + 2) incorporating mean-field one-body
part is straightforward. The BEGOE(1 + 2) Hamiltonian is,

N
{HYseGoE(+) =h() + MV} h() =) eifi. 9.5)
i=1

The V(Z) above is same as H (2) in Eq. (9.1) and the two-particle matrix elements of
’\7(2) are Vi = (i, j|’\7(2)|k, [). Similarly, &; in Eq. (9.5) are sp energies and they
can be fixed or drawn from an appropriate random ensemble as in EGOE(1 + 2).
Now on, we will drop the hat over H, h and V when there is no confusion. The m
particle matrix for H in Eq. (9.5) follows from Eqgs. (9.2) and (9.3) by just adding
the /(1) contribution to the diagonal matrix elements,

< [T o I1 (w)"*>= > e 9.6)

r=i,j,... r=i,j,... r=i,j,...

h(1)

We assume that the sp energies given by 4(1) have average spacing A. The A pa-
rameter is expressed in units of A and we assume without loss of generality A = 1.
Clearly, it is easy to construct BEGOE(1 + 2) matrices on a computer using the
code for BEGOE(2). However, the matrix dimensions makes the calculations pro-
hibitive for larger vales of (m, N). For example dp, (5, 10) = 1001, dj (6, 12) = 6188,
dp(6,20) = 53130, dp(8, 20) = 888030 and dj (10, 20) = 10015005.

It is important to stress that, unlike for fermionic EE, there are only a few BEE
investigations in literature [1, 6, 8—11]. Moreover, for interacting spinless boson
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Fig. 9.2 Young tableaux for

various tensor parts of / SUM)
two-body operators with LT X
respect to SU (N) for spinless 2} o

boson systems. Figure 5.1a
gives the tensor parts for |
one-body operators (Color N1y

figure online)

2N {32821} {422}
={0} ={21%2}
v=0 v=1 v=2

Two-body Operators

systems with m bosons in N sp orbitals, dense limit defined by m — oo, N —
oo and m/N — oo is also possible as m can be greater than N for bosons. Also,
many of the results for bosons, as discussed ahead, can be obtained from those for
fermions by using N — —N symmetry and a m — N symmetry [12-15].

Using BEGOE(1 + 2) codes, in many numerical examples, eigenvalue densi-
ties p(E) are constructed and they are seen to be close to Gaussian in form. Due
to growing matrix dimensions, most of the calculations are restricted to N =4, 5
with m = 10-12 giving reasonable examples for the dense limit [6, 9, 16]. See
Fig. 5.2 for an example. In order to further confirm that p(E) is close to Gaussian
for BEGOE(1 + 2), analytical formulas for the first four moments of the eigenvalue
density are derived for a given H (14 2). Before turning to them it is useful to men-
tion that a more symmetrized form of V;j;; will be useful and to this end introduced

are ¥;jx where
Vijk =/ (1 +8i) (A 4 8k) Vijia.- 9.7

Then, the V (2) operator takes the form

1
V@) =5 D Yijublbibibi. 9.8)
i,j.k,l

In the next two subsections AV (2) is called V (2).

9.2 Energy Centroids and Spectral Variances: U (N) Algebra

Embedding algebra for BEGOE(1 + 2) is U (V). As one and two boson states trans-
form the U (N) irreps {1} and {2} in Young tableaux notation, the one and two boson
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creation operators also transform as {1} and {2}. Then, one and two boson annihila-
tion operators transform as {1V~1} and {2~} respectively. Therefore, 4 (1) trans-
form as {1} x {IN"1} = {1V} ={0}]1 @ {21V 2} = (v =0) + (v = 1) irreps (or
tensors). Note that here we have used U (N) <> SU (N) equivalence. Similarly V (2)
transforms as {2} x 2V} = [2V} = {0}] @ [{32V 21} = 21V 2} @ {42V 2} =
v=0)+ (v=1)+ (v=_2) irreps (or tensors). Figures 5.1a and 9.2 show these
decompositions in terms of Young tableaux for one-body and two-body operators
respectively. Given H = k(1) + V(2) as defined by Egs. (9.5)—(9.8), it is possible
to write explicitly its U (N) decomposition into various v parts. Firstly, it is easy to
recognize the v = 0 part as it should be a scalar with respect to U (N), i.e. it should
be a polynomial in 7. The result is,

HY=0(142)=h"=0(1) + VV=02) = goi + Vo <Z ;
| 9.9)

|
N Vem—— Ny
NXi:s' 0 2N(N+1)iZ/: ijij

Little thought will give the v = 1 parts of 4(1) and V (2),
H"=' (1 +2) =h"=1(1) + V=),
hv= 1(1)—Z8U T &/ =l — ¢ — ¢,

V=) = (ﬁ 1> ¢ bibj: (9.10)

)

1 1
i,j = Vikjk — 8ij— Vonmn | |-
6i.j N+2Zk ( ok JN[Zmn ])

Thus, VV=! corresponds to an effective (m-dependent) mean-field producing part
of V(2) and it is in general off-diagonal in the original mean-field basis, i.e. {;; # 0
for i # j. Finally, V"=2(2) part is given by

VV=2(2) = V(2) — V'=0(2) — vV=1(2);
‘/l;; =Vijij —Vo—¢i.i — &)
Vis? = Ve — (L4 850U+ 8,086 ) 14,

Vl.;kl = Vijr;  for all other cases.

©.11)

Also, we can write the VV=2(2) operator as

_ 1 ~ ~
VU@ = Y Tub bbb T =+ 8+ 8) Vi 912)

i,J.k.l
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Just as for fermion systems, propagation equation for boson systems for the m-
particle average of a k-body operator A (k) is simple,

m

(AG))" = <k>(A(k))k. 9.13)

Similarly, the various v pats of A (k) will be orthogonal with respect to averages over
the m-boson spaces, i.e. (A" B"2)" =§,,,, (A" B")™. As the m particle averages
are polynomials in m, using Eq. (9.13) we obtain easily the propagation equations
for the energy centroids and spectral variances,

Ec(m) =(H(1+2))" = mey + (m) Vo,

2
o2(m) = ((H — HY=)2" = ((H"=1)")" + ((H"=2)*)";
b=y _ N S
(=" =S vt Y Eim)Eji(m), ©.14)

i,j
&j(m) =e’=18;; + (m — Dgyj,

_mm—=1DN+m)(N+m+1) 1

v=2)2\m . A
(=) == v o +3 4,-%:1%/’(%1['/'

Using Eq. (9.14) we can calculate ensemble average values for the energy centroids
(they come from /(1) only) and spectral variances for any m and with these, Gaus-
sian eigenvalue densities can be constructed. However, to prove that the dense limit
gives Gaussian form, formulas for the third and fourth moments are needed as dis-
cussed below.

9.3 Third and Fourth Moment Formulas: Gaussian Eigenvalue
Density in Dense Limit

For fermion systems, formulas for the third and fourth moments ((H — H"=0)y",
i = 3,4 are derived in detail by several authors using diagrammatic methods [17,
18]. They can be extended to boson systems by using N — —N symmetry [12-15],
i.e. by substituting —N for N in the expressions for moments of fermion systems
and then taking absolute values of each term, one obtains the expressions for boson
systems. The final formulas for 3rd and 4th moments are [12] as follows. Firstly,
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formula for the 3rd central moment is

oty = ((H = =) )"
_ m(N +m)(N +2m)
~ N(N+D(N+2)

T () e

3
=D & mE(mEi(m).  X2=3D1+ZE.  X3=3E,
i,j.k
Dy =Y Fijubn(m)Ej(m),
i,j.k,l
Z Vijki Virij&ir (m).

i,j.k.Lr

1

(9.15)
Formula for ((¥)3)" is given ahead. Going further, formula for the fourth central

moment is,

My = <(H _ HU:0)4)m
_mWN+m NadmaI\/s+2\" /Nats+1)\"!
T N(N+1) +Z< )( )( 2) ( s+ ) Y,
m NAm+2\/s+4\""/N+s+3\"! .
+s§3<s+1)< 3 )( 3 ) ( 544 ) Zs + (O

Y) = 12K1 4+ 2(G1 + G2 + G3) + F +3(M1)?> + 6 M3,
Y3 =24K, +2F],

3
Z) =12G1 +6Go + 12G3 4+ 12G4 + §G5 +2F1 + 12F, + 6F3,

=4F| +24F, + 12F3,
My =) &jmEim),  My= Y &;(m)&x(m)éa(m)&im),

i,j i,j,k,l

Ki= Y Fijubix(m)Ejr (m)&n(m),
i,j.k,l,r

G = Z %jkl%xijé:ir(m)é:rs(m)’ Gy = Z %jki%sijékr(m)éls(m),
i,j.k,l,rs i,j,k,l,rs

Gi= Y Tijulhrisbirméiom),  Ga= Y FijaTiriskji(m)ees(m),

i,j.k,l,rs i,j.k,l,rs
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F

F3

i,j,k,l

2

i,j.k,Lrs,p

Z %’jkl’y/klrj %pisé'_sp (m).
i,j,k,0,rs,p

r,s

ly/ijkl 7/kprs 7/rsij slp (m),
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[ > "Z,,m“fku,} [Zas ()&, (m)],

P ﬁ/kl%rjs%priskp(m)»

2.

i,j.k,lrs,p

(9.16)
Finally, formula for (“17’ Y™, valid for r =2, 3 and 4, is given by
r -1 —1
~ m\ (N +s+m—1\/[2s N+2s—1 )
,y r m — S.
=2 ()" )(s> (") e
s=2
1 ~ ~ 1
= Z Z nj/ijkl’y/klij, S Z %11{17/]([” rsijs
i,j.k,l lelrv
c3=2C3+ Y TS Tsin  Ci= 1—6 (AAD),
i,j.k,lrs
1 1
=7 (AAD) 4+ (CC1) + 3 (BA1)+2(CA1),
3 2
4_ 3 2
C, = ° (AA1) +6(CC1) +3(BA1) + 6(CA1) +3(AB1) 4+ 3(C3)", ©.17)

AAl = Z A//ijklﬂj/klrsﬂi/rsap%pijy
i,j.k.0,r.s,0,p

ABl = Z %/kl%rjsqi/sorply/pkoia
i,j.k,l,r.s,0,p

BAl = Z %jkl%clis%sop%prjy
i,j.k,l,rs,0,p

CAl = Z %jkl%crso%lrp%pij»
i,j.k.0,r.s,0,p

CCl= Z Viiki VesjoVoisp Vpkri-
i,j.k,l,r.s,0,p

By numerical construction of various members of BEGOE(1 + 2) with some values
for (m, N, A), formulas given by Eqgs. (9.14)—(9.17) have been verified and they in
turn provide a good test of the BEGOE(1 4+ 2) codes. Some examples are as follows
[19]. For m = 8§, 12, 20 and 400 with N =5, 3, values are —0.21, —0.11, —0.05
and —0.03 respectively. Similarly, for m = 12,20 and 400 with N = 12, the >

values are —0.17,

—0.07 and —0.01 respectively. For sufficiently large values for

N (N >5)and m > N, |y2] < 0.3 (¥1 ~ 0 as expected) for BEGOE(2). Analytical
formula for 7 can be obtained by considering V"=2(2). In the strict dense limit,
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only this part will generate y» for BEGOE(2). Equations (9.17) and (9.14) will give,

TR (N+2)(N+3)P
(N +5)(N+6)(N+7)
(N +4)(N +5)?
(N +2)(N +3)
(VAN +6)
(N +2)

[72(4,N) +3]

[123, N) +3]+ (N + D[22, N) +3].

(9.18)
For sufficiently large N, y»(m, N) for m = 2, 3 and 4 will be given by Eq. (4.32), i.e.
ya(m) ~ ()" ("72) = 1. Then, 122, N) = 12(3, N) = —1 and 2 (4, N) = —5/6.
These and Eq. (9.18) will lead to

y2(00, N) = =2(2N + 11)/(N + 6)(N + 7). 9.19)

Therefore in the dense limit [6],

-
" dense limit _ = (9.20)

and this is good for N > 20. The dense limit result for BEGOE(2) as given by
Eq. (9.20) should be compared to the result y,(m) — —4/m for EGOE(2) for
fermions in the dilute limit. Thus there is a m — N symmetry between fermions
in dilute limit and bosons in the dense limit. Thus, for sufficiently large values of
N, BEGOE(2) gives Gaussian eigenvalue densities in the dense limit. However,
even for small N as seen from Eq. (9.19), the Gaussian form is valid. For example
for N =5, we have y»(oco0, N) = —0.32 and therefore for the dense boson systems
N > 5 is sufficient for obtaining the Gaussian form.

Simplifications used above are some what complicated for BEGOE(1 + 2).
However, it can be shown easily [12] that reasonable /(1) will give Gaussian
densities in the dense limit. Combining this with the EGOE(2) Gaussian densi-
ties, one can argue that BEGOE(1 + 2) in general, independent of A value, gives
Gaussian eigenvalue densities; see Fig. 5.2. Numerical calculations for sufficiently
large value for N (N > 5) and m > N have indeed shown that |y;| < 0.3 (sim-
ilarly 1) for BEGOE(1 + 2). Some examples with A = 0.025 and sp energies
given by &; =i + 1/i are as follows [19]. With m = 10, for N =4, 6 and 8,
(71, 72) = (0.16, —0.43), (0.13, —0.29) and (0.09, —0.25) respectively. Similarly,
With m = 5000, for N = 4,8 and 12, (y1,72) = (0.0, —0.41), (0.0, —0.2) and
(0.0, —0.13) respectively.
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9.4 Average-Fluctuation Separation and Ergodicity
in the Spectra of Dense Boson Systems

9.4.1 Average-Fluctuation Separation

For boson systems we will consider BEGOE(2) and the dense limit defined by
m— 0o, N — oo and m/N — oo. As discussed in Sect. 4.3.1, level motion in
BEGOE(2) is given by Eqgs. (4.44) and (4.50) as the eigenvalue density in the dense
limit is close to a Gaussian. To apply Eq. (4.50), we need X,,. A formula for this is
obtained as follows.

In two particle space, the H matrix is GOE and therefore the two particle matrix
elements Hyg are independent Gaussian variables with Hyg = 0, H2, = 202 and

H 2/3 = v? for o # 8. Now the two particle variance is,

W <N+1> Z

N+1\" N+1 N+1 2 N+1 ’
= -1 2 . (921
(") {(2){<2) o () o
For large N, the above equation simplifies to (H2)m=2 = N2u?/2. Therefore the
m-particle variance o2(m), from Eq. (9.14), is

o) = (1) = (5"
~ NN+ 1D(N+2)(N+3) '

(9.22)

Then in the dense limit, using the normalization (H 2ym=2 — 52(2) = N>v?/2 =1,

we have
2 -1
2, (m N
o (m)—<2) (2) . (9.23)

Now, the variance ¥1; of the centroid fluctuations is given by

S11 = TP ~ TP HT = 50 Y Hu i 5 Hy
« B

N+1 4 m—
N4Z —< ;)21;2:2%(112(2)) 2

4
- m
= Ellzzm. (9.24)
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In the last step in Eq. (9.24) we have used the normalization that 62(2) =1 and also
HyoHpg =0 for a # B. Similarly the expression for the variance of the variance
fluctuations Yoy = (H2)m(H2)ym — (H2)ym (H2)™ is derived as follows. First we
use

m(m—1)(N +m)(N +m + 1)(H2>2

(He)"
NN+ DN +2)(N +3)

m— 00,

Ve m 23" H (9.25)

m/N—oo N4 =

Then,

8
222:4%21{5,31{55 N Z Hiy > Hy

ailg az>p y=6
vz
ms — e —
=475 ZHﬁ+ > H H2 ZHjﬁZH)%}
a>p otﬂ;;yﬁ azp Y20
¥Ss
md — —\2
D IR NCAESD STAHED SN
a>p a>p «>p azp
y>6 y>6
_4’"_8 3 4_ 4
=47 douvt=->w
a=p =P
8
=4m_2{1(N+1)<<N+1>+1>}U4
N8 2\ 2 2
8
:42 (H2 @) (9.26)

Now using the normalization that 0%(2) = 1 gives

~ m8
In=dog. 9.27)

Following Eqs. (9.24) and (9.27), it is conjectured [6] that in general f];g is,

- o m¥ m\% (N\ %
See = (HEY"(HE) :2;W=2;<2) (2) . (9.28)
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Note that for a k-body Hamiltonian, it is plausible that i‘;; =2¢ (’;’)2Z (IZ ) - . Com-
bining (9.23), (9.28) and (4.50) will give,

— N\ ¢
(87)=2¢ ( 2) : (9.29)

Substituting this in Eq. (4.44) gives for the level motion in dense limit for
BEGOE(2),

(BE)? BEGOEQ®) (N +m —1\2(m\*(N\ >
DES ( m ) <2> (2) [ea(E)

x {Z(;!)—zzc (Z)C[HeU(E)]z}

=1

o 1 (V1Y 1 /N\72 1 (N\*
;T{HE(z) +%(2) +} (9.30)

2

i

Thus, just as for fermions (see Chap. 4), as ¢ increases, deviations in (8 E)? from the

leading term rapidly go to zero due to the (g’)izr, r=1,2,...terms in Eq. (9.30).
There will be no change until { ~ N /2, thereby defining separation. Beyond this,
as pointed out first for bosons by Patel et al. [6] using numerical calculations, for
¢ > N/2 the deviations grow, i.e. fluctuations set in and they will tend to that of
GOE. This is further tested using more numerical calculations in [16]. Comparing
Eq. (9.30) with Eq. (4.54), one sees again m <> N symmetry between dilute fermion
and dense boson systems.

9.4.2 Ergodicity in BEGOE(2)

An important question raised by Asaga et al. [8], investigating BEGUE(k) is that
the bosonic ensembles are not ergodic. This was inferred from the study of level
fluctuations for large number of bosons in two and three sp states. Turning to boson
systems it is seen from Egs. (9.24) and (9.27), in the dense limit, scaled X; and
2y are

~ X 4
S = 11(m) N

(HAm N

—~ X (m) 16
Sp=——

(9.31)
{(HZ)m}Z - W

for BEGOE(2) and they remain valid even for BEGOE(k). Secondly, as m — oo and
N finite, still the BEGOE(k) matrix dimension is infinity. Thus, we have a situation
where the matrix dimension is infinite and the centroid and variance fluctuations are
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not zero. Therefore, BEGOE(k) [similarly BEGUE(k)] is not ergodic if the dense
limit is defined by m — oo and N finite [1, 8]. However if we follow the definition
used in the beginning of this section, then in the dense limit with sufficiently large
N value fluctuations in centroids and variances will tend to zero; see also Fig. 9.3.
Going beyond this, fluctuations in y; and y» have been studied numerically for
sufficiently large N values and very large m values using the formulas given in
Sect. 9.3. As seen from Fig. 9.3, numerical results clearly establish that the variances
in y; and y» rapidly go to zero in the dense limit as N increases. Thus in the dense
limit defined by m — oo, N — oo and m/N — oo, BEGOE(k) [also BEGUE(k)
discussed in Chap. 11] will be ergodic [9].

9.5 Poisson to GOE Transition in Level Fluctuations: A, Marker

In Chaps. 5 and 6 it is seen that fermion systems exhibit three transition markers and
these play an important role in statistical nuclear spectroscopy and in mesoscopic
physics as discussed in Chap. 7. Further applications will be discussed in Chap. 15
ahead. Then, an important questions is: does BEGOE(1 4 2) also exhibit three simi-
lar transition markers. This is answered in the affirmative in the present and the next
two subsections.

Numerical calculations for N =4, 5 systems with m = 10—12 have been carried
out in [9] and they clearly showed that, as the interaction strength A in Eq. (9.5)
varies, BEGOE(1 + 2) exhibits Poisson to GOE transition in level fluctuations and
there is a A, marker for this transition just as for EGOE(1 + 2). Figure 9.4 shows
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Fig. 9.4 Ensemble averaged NNSD histogram with H = h(1) + AV (2), for various X values for a
BEGOE(1 +2) system with N =5 and m = 10. Note that in the figure, H; = k(1) and Hy = V (2).
BEGOE results are compared with Poisson and Wigner (GOE) forms. It is seen clearly that the
system exhibits Poisson to GOE transition in NNSD

an example. For A = 0 there are deviations from Poisson form as the sp energies
chosen are ¢; =i + 1/i (see also Chaps. 5 and 6). The transition marker A, can be
determined for example by using Eq. (5.18). This gives for example, A, = 0.025,
0.018 and 0.015 for m = 8, 12 and 16 (with N = 4) respectively. Similarly, A, =
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Fig. 9.5 Calculated critical 0.035 T T T T T
interaction strength A, vs [ A N=4, m=(7 to 16)
B/K. Filled circles are for ® N=5, m=(7to 12)
N =5 (withm =7 — 16) and 0.030 | Y ]
filed triangles are for N =5 ]
(with m = 7-12). Figure is .
taken from [9] with L ]
permission from Elsevier o 0.025 C / a ]
(Color figure online) < i ) 4
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0.027, 0.021 and 0.018 for m = 8, 10 and 12 (with N = 5) respectively. In order
to verify if A, values for BEGOE(1 + 2) follow AJS criterion, an attempt has been
made in [9]. According to AJS, A, is proportional to the spacing between states
directly coupled by V(2). With B giving the span of the directly coupled states
(B o« NA) and K the number of directly coupled states, A, & B/K. However till
now there is no success in deriving a formula for K for boson systems. In [9], K is
determined by explicit counting in many numerical examples with N =4, 5. Plot of
Ac v8 B/K, constructed using this, as shown in Fig. 9.5, verifies that AJS is indeed
applicable to BEGOE(1 + 2). It should be noted that though A, is proportional to
B/K, the slope is seen to be N dependent.

9.6 BW to Gaussian Transition in Strength Functions: A
Marker

Strength functions Fy(E) defined with respect to the basis states |k), which are
the eigenstates of i (1) with energy Ey = (k|H|k), as discussed before in Chap. 5,
give information about localization (or delocalization) of the wavefunctions. Just as
for fermionic systems (see Chaps. 5 and 6), increasing A beyond A, it is seen that
the strength functions Fi(E) generated by BEGOE(1 + 2) exhibit BW to Gaussian
transition [10] giving a transition marker Ar > A.. Figure 9.6 shows an example. In
the calculations, strength functions Fg (E) with § —§ < E; < & +§ are averaged and
plotted as F¢(E) in Fig. 9.6; § = 0.025 for A < 0.035 and 0.1 for A > 0.035. The
calculated F¢ (E) histograms are fitted to a simple function Fg (E : ) interpolating
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Fig. 9.6 Ensemble averaged F:(E) histograms for a 20 member BEGOE(1 + 2) with N =5,
m = 10. Results are shown for £ = 0, =1 and for various X values. Best fit curves obtained using
Eq. (9.32) are also shown for each £ and A. All energies are scaled using o, the spectral width.
It is seen clearly that the system exhibits BW (for very small A, it is close to a delta-function) to
Gaussian transition in strength functions. Figure is taken from [10] with permission from Elsevier

BW and Gaussian forms,

Fe(E: ) = uFpwe(E) + (1 — w)Fg.e(E);
1 r
27 (E —E)2+T2/4° (9.32)
1
V2ro

FBW:S(E) =

Fys(E) = exp—(E — £)*/207

with (u, I', o) being the free parameters. As seen from Fig. 9.6, the fits are quite
good. As p defines the shape of F:(E), this is the most important parameter in
Eq. (9.32). Weighted average of u as a function of A is shown in Fig. 9.7 and average

is calculated as u = [>_ (&) exp —52/2]/[2 exp —52/2]; w(§) represents p-value
that corresponds to Fg (E) for a given A. Using Fig. 9.7 and a criterion for onset of
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Gaussian behavior, one can deduce the A value. In [10, 20], the criterion used is
R(Ap) =0.7;

Y AFE(E) — Fpwe (E)Y (9.33)

R(\) = .
* Y i{Fg.(E)) — Fpw.e(E)}?

The interpolating function Fg(E : ) gives R(Ap) = (1 — u?) =0.7= pu=0.163.
Thus, there will be Gaussian behavior for yu < 0.163 with onset at 0.163. This to-
gether with the results in Fig. 9.7 give Ar ~ 0.05 for the N =5, m = 10 system
considered in Fig. 9.6. Although we have clear demonstration that as A going be-
yond A., strength functions make a transition from BW to Gaussian form in the
dense limit of BEGOE(1 + 2), just as with A, there is no formula yet for the Af
marker in terms of (N, m).

9.7 Thermalization Region: A; Marker

9.7.1 NPC, S™° and S°¢¢

As we increase A beyond A, BEGOE(1 + 2) generates a region of thermalization.
Before discussing this, we consider NPC, Sinfe and $°¢¢ in the dense limit. Firstly,
for & > A, it has been well verified that Eq. (5.23) describes NPC in /(1) basis and
similarly Eq. (5.25) for exp(S”/°). Some examples are shown in Figs. 9.8 and 9.9
and given in these figures are also the values of the correlation coefficient ¢. In
Fig. 9.9, S™° in both A(1) and V(2) basis is shown and the importance of this
will be discussed ahead. As there is no restriction on number of bosons in a given
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Fig. 9.8 NPC vs E for different A values for a 20 member BEGOE(1 + 2) with N =5, m = 10.
In the figures ‘theory’ corresponds to Eq. (5.23). Values of ¢, the correlation coefficient, are also
shown in the figures (Color figure online)

sp level, definition of S°““(E) will be different for bosons, i.e. Eq. (5.32) will not
apply. The definition is,

$°(E) = — Y (Eli;| EMIn(E|A;|E)}.

i

(9.34)

Here, (E|n;|E) is the occupancy of the i-th sp state at energy E. Applying Eq. (5.31)
and carrying out simplifications by treating ¢; as a continuous variable, formula for
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Fig. 9.9 Information entropy BEGOE(1+2)

vs E in the A(1) and V (2) m=10, N=5

basis for a 100 member N AAY
BEGOE(1 +2) ensemble wf @M 0 VO]

with N =5, m = 10 for
different A values. Results
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V (2) basis. Ensemble
averaged ¢2 values are also
given in the figure. Note that
at the duality point A = A4,
the results in 2(1) and V (2)
basis coincide. Although not
shown in the figures, the
BEGOE(1 + 2) results follow
Eq. (5.25). See Sect. 9.7.2 for
details. Figure is constructed
using the results in [21]
(Color figure online)

exp(S""(E)-S gyy)

S9¢(E), valid in the A > A has been derived in [9] giving

N+m\ ¢2E?
N 2

(9.35)

exp{S{)CC(E) —exp Socc:max} =exp— |:(

Result of Eq. (9.35) is compared with numerical examples in Fig. 9.10.

In order to apply the formulas for NPC, S/ and §°¢° , we need the correlation
coefficient ¢ and it is defined by Eq. (5.21). Formula for this follows from the results
in Sect. 9.2 and the fact that number of off-diagonal and diagonal two-particle matrix
elements are N(N + 1)(N +2)(N — 1)/4 and N(N + 1)/2 respectively. Secondly,
for the V (2) matrix, variance of the these off-diagonal elements is A2 while that of
the diagonal elements is 24%. Then we have,

m(N+m) ~2 2 m(m—1)(N+m)(N+m+1)

2. N) = N+ i & A TN )
’ " m(N+m) =2 2 mm=D(N+m)(N+m+D(N24+N+2)
NvED i & A AN+ (N+3) }

(9.36)
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Fig. 9.10 S59° vs E for the same system used in Fig. 9.8. In the figure, open circles correspond to
the results from the ensemble calculations and the continuous (red) curves correspond to Eq. (9.35).
Ensemble averaged ¢ values are also given in the figure (Color figure online)

Numerical calculations in [10] showed that Eq. (9.36) is good for any A.

9.7.2 Thermalization in BEGOE(1 + 2)

Thermalization in interacting boson systems was investigated by Borgonovi et al.
[22], using a simple symmetrized coupled two-rotor model. They explored different
definitions of temperature and compared the occupancy number distribution with the
Bose-Einstein distribution. Their conclusion is: “For chaotic eigenstates, the distri-
bution of occupation numbers can be approximately describe by the Bose-Einstein
distribution, although the system is isolated and consists of two particles only. In this
case a strong enough interaction plays the role of a heat bath, thus leading to ther-
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malization”. In order to establish that this is a generic property of interacting boson
systems, thermalization in BEGOE(1 + 2) was investigated in [21] using different
definitions of temperature and entropy and the results are as follows.

Temperature can be defined in a number of different ways in the standard ther-
modynamical treatment. These definitions of temperature are known to give same
result in the thermodynamical limit i.e. near a region where thermalization occurs
[23]. Four definitions of temperature (7' = B~ are:

e [.: defined using the canonical expression between energy and temperature,
Y, Ei expl—p.Ei]
Zi CXp[—ﬂc Ei]

where E; are the eigenvalues of the Hamiltonian.
o Byis: defined using occupation numbers obtained by making use of the standard
canonical distribution,

(E)g, (9.37)

>E _ Zi <nk)Ei exp[—Byir Eil
>_iexpl—BritEil
Here & is single particle state index and E; are eigenvalues. In applying Eq. (9.38),

the constraint Zk(nk)E = m should be taken into account.
e [pEg: defined using Bose-Einstein distribution for the occupation numbers,

(nk (9.38)

(ni)® =1/ {exp[Bpe(E)(ex — n(E))] = 1}. 9.39)

Here u is the chemical potential. Although, this expression is derived for a system
with large number of non-interacting particles in contact with a thermostat, it can
be used even in isolated systems with relatively few particles [24, 25].

e [r: defined using state density p(E) generated by H. Note that

_ dIn[p(E)]

Br 1E

(9.40)
Figure 9.11 shows ensemble averaged values of 8, computed via various definitions
described above, for a 100 member BEGOE(1 + 2) ensemble with m = 10 and N =
5 as a function of £ = (E —¢)/o, for various A values. The § values are calculated
from E = —1.5 to the center of the spectrum, where temperature is infinity. The
edges of the spectrum have been avoided as (i) density of states is small near the
edges of the spectrum and (ii) eigenstates near the edges are not fully chaotic. Since
the state density for BEGOE(1 + 2) is Gaussian irrespective of A values, Br as a
function of energy gives straight line. Dotted lines shown in the plots represents 7
results in Fig. 9.11. It is clearly seen that for A < A, [for (m, N) = (10, 5), A, ~0.02
and Ar ~ 0.05], all the definitions give different values of 8. Whereas in the region
A < AF, temperature found from BE distribution, SpEg, turns out to be completely
different from other temperatures. As in this region, the structure of eigenstates is
not chaotic enough leading to strong variation in the distribution of the occupation
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numbers and therefore strong fluctuations in Spg. Moreover, near the center of the
spectrum (i.e. as T — 00), value of the denominator in Eq. (9.39) becomes very
small, which leads to large variation in 8p g values form member to member. Further
increase in A > Ap, in the chaotic region, all definitions give essentially same value
for the temperature for A ~ A;. It is seen from Fig. 9.11 that the matching between
different values of § is good near . = A, =0.13 for the N =5, m = 10 example.

For further establishing that A ~ A; defines thermodynamic region, used are three
different definitions of entropy and these are [as in EGOE(1 4 2) and EGOE(1 + 2)-
s studies] thermodynamic entropy S™’, information entropy S”/° and occupancy
entropy S°°“. The following measure, introduced in [26] (see also Chap. 15) has
been used to obtain A;:

i 2 2 172 o
A1) = {/ [(RUF — RUer)? 4 (R} — Rer) ]dE} /{/ RZﬁ”dE},
—0o0

—00
(9.41)
where R% = exp[S¥(E) — S5, ]. In the thermodynamic region the values of the
different entropies should be very close to each other, hence the minimum of Ay
gives the value of X;. In Fig. 9.12, results shown for ensemble averages A, (1) (blue
stars) obtained for a 100 member BEGOE(1 + 2) ensemble with 10 bosons in 5
single particle states as a function of the two-body interaction strength 1. The second
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Fig. 9.12 Ensemble . BEGOE(1+2): (m,N) = (10,5)

averaged values w and Ay as 1.0 [ T T T vav e
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vertical dashed line indicates the position of A, where ensemble averaged As()) is
minimum. For the present example, we obtained A; >~ 0.13. This value of A; is same
as obtained using different definitions of temperature. In order to show that A, < A,
the NNSD as a function of X are fitted to Brody distribution and extracted the Brody
parameter w. Then the chaos marker A, is determined by the condition w(A) = 1/2.
Ensemble averaged values of w(A) are shown in Fig. 9.12 and the X, value is shown
by a vertical dash line in the figure.

To derive a formula for A;, considered is duality in BEGOE(1 + 2). The dual-
ity region (see Chaps. 5 and 6) A = XA, is the region (in A space) where all wave
functions look alike and it is expected to correspond to the thermodynamic region
defined by A = A;. To examine duality, S”°(E) in h(1) basis and in V (2) basis are
compared. Figure 9.9 shows some numerical results and it is seen that the values of
S (E) in these two basis coincide at A = 0.13 giving value for the duality marker
Ag >~ 0.13 for the N =5, m = 10 example. This value is very close to the value
of marker A, and therefore, 14 region can be interpreted as the thermodynamic re-
gion in the sense that all different definitions of temperature and entropy coincide
in this region. As discussed in Sect. 5.3.5, A; is given by ¢2(%;) = 0.5. In addition,
Eq. (9.36) gives the (m, N) dependence of the marker,

— (N+2)X ~ N L
. _2\/N(N+ DN =2)(m — (N +m—1)’ X—;& : (9.42)

For uniform sp spectrum with &; =i, X = N(N + 1)(N — 1)/12 and then,

o (N = 1)(N +2)
T3 —2)m— DN +m+1)
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For m =10 and N =35, this gives A; & 0.15. For the sp energies that are used in the
calculations in Figs. 9.11 and 9.12, X = N(N? + 5)/12 and then

_ (N +2)(N* +5)
"TVIWN+ DN =2)(m—D(N+m+1)

For m =10 and N =5, this gives A; &~ 0.16 as compared to the numerically found
value A; = 0.13. In the dense limit, Eq. (9.42) gives A; ~ %\/g . Similarly, in the

dilute limit, it gives A; ~ ﬁ in agreement with the EGOE(1 + 2) result given in
Chap. 5.
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Chapter 10

Embedded GOE Ensembles for Interacting
Boson Systems: BEGOE(1 + 2)-F

and BEGOE(1 + 2)-S1 for Bosons with Spin

Going beyond the embedded ensembles for spinless boson systems, it is possible
to analyze BEGOE for two species boson systems in terms of bosons carrying a
fictitious (F = %) spin such that the two projections of the boson correspond to
the two species. With GOE embedding, this gives BEGOE(1 + 2)-F ensemble [1].
Similarly, because of the interest in spinor BEC and also in the IBM-3 model of
atomic nuclei, it is useful to study BEE with bosons carrying spin S = 1 degree of
freedom. With GOE embedding, this gives BEGOE(1 42)-51 ensemble [2]. Results
for these two ensembles are presented in this chapter.

10.1 BEGOE(1 4+ 2)-F for Two Species Boson Systems

For a two species boson system, it is possible to introduce a fictitious spin, called
F-spin for the bosons, such that the two projections of F' represent the two species.
Then, for m bosons the total fictitious spin F' takes values % % —1,...,00r % For
such a system with m number of bosons in £2 number of single particle levels, each
doubly degenerate, it is possible to define an embedded Gaussian orthogonal ensem-
ble of random matrices generated by random two-body interactions that conserve
the total F-spin and this random matrix ensemble is denoted by BEGOE(1 + 2)-F.
With degenerate single particle orbitals we have BEGOE(2)-F. The embedding in
BEGOE(1 + 2)-F is generated by the Lie algebra U (2§2) D U(£2) ® SU(2) with
SU(2) generating F-spin. Some applications of BEGOE(1 + 2)-F are: (i) the en-
semble is directly applicable to the proton-neutron interacting boson model (pn-
IBM) of atomic nuclei [3] and gives, as discussed ahead, some generic structures
generated by F-spin used in this model; (ii) it is possible to use the ensemble as a
generic model for interacting boson systems, with internal degrees of freedom, in
the study of various issues related to thermalization in finite quantum systems [4—6];
(iii) this ensemble will allow us to obtain deeper understanding of the similarities
and differences in statistical properties of interacting fermion and boson systems (in
addition to using embedded ensembles with spinless fermions/bosons, it is possible
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to use ensembles with spin degree of freedom for fermions/ bosons); (iv) it is possi-
ble to apply this ensemble to two component boson systems such as those discussed
for example in [7].

10.1.1 Definition and Construction of BEGOE(1 + 2)-F

Let us consider a system of m (m > 2) bosons with F-spin degree of freedom and
occupying £2 number of sp levels. For convenience, in the remaining part of this
paper, we use the notation .% for the F-spin quantum number of a single boson, f
for the F-spin carried by a two boson system and for m > 2 boson systems F for
the F-spin. Therefore, .% = 2, f=0orland F = 2 2 1,...,0o0r % Similarly,
the space generated by the sp levels i = 1,2, ..., §2 is referred as orbital space.
Then the sp states of a boson are denoted by |i; é, mg) withi =1,2,...,8 and
mg = % (spin up) or —5 (spm down). Note that m & are the elgenvalues of the
z-component ﬁz of the F -spin operator F for a single boson. With £2 number of
orbital degrees of freedom and two spin (m g ) degrees of freedom, total number
of sp states is N = 2£2. Going further, two boson states that are symmetric in the
total orbital x spin space are denoted by [(ij); f,m ) with f = % X % =0or 1.
Then, my =0 for f =0 and my =1,0,—1 for f = 1. Similarly, for f =1 we
have i > j (or equivalently i < j) and for f =0 we have i < j (or equivalently
i > j). This gives, without counting the m s quantum number, for f =0 and f =
1, number of sates to be £2(£2 — 1)/2 and £2($2 + 1)/2 respectively. For further
discussion, we need boson creation (bT___) and annihilation (b___) operators. In
terms of them, the sp states are |i; %, mg) = bT e |O). Similarly, the two boson

states are |(ij); f,my) = «/(1+—5

(angular momentum) coupled representatlon
For one plus two-body Hamiltonians preserving m particle F-spin, the one-body
Hamiltonian A(1) is

(b:r b' g )m ; |0) Note that here we are using spin

2
h(l) = Zsini (10.1)

where the orbitals i are doubly degenerate, n; are number operators and &; are sp
energies (it is in principle possible to consider /(1) with off-diagonal energies ¢;;).
A two-body Hamiltonian operator V (2) preserving F-spin is given by,

/ f

~ V.
ZOEEDY ijke (bj:%b;:%)j;f[(b;%bz%)if]y (102)
ijk,t fomg o) (L4 8ij) (1 + Ske)

The ‘prime’ over the summation symbol in (10.2) indicates that the summation over
i, j,kand{isrestrictedtoi > jandk > £ for f =1andi > jand k > £ for f =0.
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Fig. 10.1 Figure illustrating BEGOE(1+2)-F : Q=4,m=10
the block diagonal structure
of V(2) and H (m) matrices
foraf2=4and m=10
boson system. (a) sp levels
generated by /(1) operator H= +
and the matrix of the V(2) &
operator in two boson space.
Note that the sp levels are
doubly degenerate. h(1) V(2)
(b) Decomposition of the H (a)
matrix in m particle space

into direct sum of matrices F=0 0
with fixed F-spin value. 196
There is a BEGOE(1 + 2)-F 0lim
ensemble in each (m, F)
space corresponding to each o o
of the diagonal block in (b).
Note that the matrix elements E
in the off-diagonal blocks 0/ 0 0 g
in (a) and (b) are all zero

H(m=10) =

00| 0 0 | o
® 0l0olo [ o [o ]

The symmetrized (with respect to the total orbital x spin space) two-body matrix
elements Vl/f e =) f.m f|V(2)|(kK) f,my) are independent of the m y quantum
number and this ensures that V(Z) preserves F-spin. It is seen from (10.2) that
V(2) = V/=02) + V/=1(2). Then the matrix of V(2) in two boson spaces will
be a 2 x 2 block matrix and the two diagonal blocks correspond to f =0 and 1
respectively and the off-diagonal block is zero, i.e. the matrix is a direct sum of
f =0and f =1 matrices. See Fig. 10.1a for an example of ;z\(l) spectrum in one
boson space and V(Z) in two boson spaces.

The BEGOE(2)- F ensemble for a given (m, F') system is generated by first defin-
ing the two parts of the two-body Hamiltonian to be independent GOE(1)s in the
two-particle spaces [one for 2 =0(2) and other for y/= (2)]. Now, the V(2) en-
semble defined by {V(2)} = {V/=0(2)} 4+ {V/=1(2)} is propagated to the (m, F)-
spaces by using the geometry (direct product structure) of the m-particle spaces. By
adding the 7[(1) part, the BEGOE(1 + 2)-F is defined by the operator

{H)BEGOE(12)-F = h(1) + 20 {V/=2)} + 1 {V/=1 @)} (10.3)

Here Ao and A are the strengths of the f =0 and f = 1 parts of V(2) respectively.
The mean-field one-body Hamiltonian h(1) is defined by sp energies ¢; with average
spacing A. Without loss of generality, we put A = 1 so that Ag and A; are in the
units of A. In principle, many other choices for the sp energies are possible. Thus
BEGOEC(1 +2)-F is defined by the five parameters (£2, m, F, Ao, »1). The H matrix
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dimension dy (§2, m, F) for a given (m, F) is

S2+m/2+F—1><.Q+m/2—F—2>’ (10.4)
m/2+F+1 m/2—F

_QF+1)
db(Q,m,F)—m<

and they satisfy the sum rule Yz (2F + 1)dp(2,m, F) = (N+,’:l1_1). For example:
(1) dp(4, 10, F) =196, 540, 750, 770, 594 and 286 for F = 0-5; (i) dp(4, 11, F) =
504, 900, 1100, 1056, 780 and 364 for F = 1/2-11/2; (iii) dp(5, 10, F) = 1176,
3150, 4125, 3850, 2574 and 1001 for F = 0-5; (iv) dp(6, 12, F) = 13860, 37422,
50050, 49049, 36855, 20020 and 6188 for F = 0-6; and (v) dp(6, 16, F) = 70785,
198198, 286650, 321048, 299880, 235620, 151164, 72675 and 20349 for F = 0-8.

Given ¢&; and VJ > the many particle Hamiltonian matrix for a given (m, F)
is obtained by first constructing H matrix in MFr representation (MF is the F;
quantum number). This is easy to carry out using Egs. (9.3) and (6.4). From
the (m, M p) matrix, (m, F') matrices can be obtained by projecting spin F us-
ing the F? operator just as it was done for fermion systems with spin degree of
freedom in Chap. 6. Alternatively, it is possible to construct the H matrix di-
rectly in a good F basis using angular-momentum algebra. So far in literature
for BEGOE(1 + 2)-F only the MF representation is used for constructing the
H matrices [1]. Note that, states with M = M"“” =0 for even m and Mp =
M I"V“'” = 1 for odd m will contain all F values. The dimension of this basis space
then is 2(82,m, M}?’i”) = > pdp(82,m, F). For example, Z(4,10,0) = 3136,
24,11, %) =4704, (5,10, 0) = 15876, 2(6, 12,0) = 213444 and 2(6, 16,0) =
1656369. Now we will present some results valid in the dense limit defined by
m — 00, 2 — 00, m/§2 — oo and F is fixed. After spin projection, the H matrix
constructed in M basis for a given m will be block diagonal with one block for
each F value with matrix dimensions given by Eq. (10.4). Figure 10.1b shows an
example for the block diagonal form and each diagonal block in H (m) represents a
BEGOE(1 + 2)-F in (m, F) spaces.

10.1.2 Gaussian Eigenvalue Density and Poisson to GOE
Transition in Level Fluctuations

Gaussian behavior for the fixed-(m, F) eigenvalue densities p" ¥ (E) has been ver-
ified in many examples for BEGOE(1 + 2)-F. Figure 5.2 shows an example. The
Gaussian form is essentially independent of A (also F'). As discussed in Chaps. 4, 5
and 9, the Gaussian form for the eigenvalue density is generic for embedded ensem-
bles of spinless fermion and boson systems. In addition, in Chap. 6 it was shown
that the ensemble averaged fixed-(m, §) eigenvalue densities for the fermionic
EGOE(1 + 2)-s also take Gaussian form. Hence, from the results shown in Fig. 5.2,
it is plausible to conclude that the Gaussian form is generic for EE (both bosonic and
fermionic) with good quantum numbers. With the eigenvalue density being close to
Gaussian, it is useful to derive formulas for the eigenvalue centroids and ensemble
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Fig. 10.2 NNSD for a 100 member BEGOE(1 + 2)-F ensemble with 2 =4, m =10 and F =0,
2 and 5. Calculated NNSD are compared to the Poisson (red dashed) and Wigner (GOE) (green
solid) forms. Values of the interaction strength A and the transition parameter A are given in the
figure. The values of A are deduced as discussed in Chaps. 5 and 6. The chaos marker A. corre-
sponds to A = 0.3 and its values are shown in the figure. Bin-size is 0.2 for the histograms. Figure
is taken from [1] with permission from IOP publishing

averaged spectral variances. These in turn, as discussed ahead, will also allow us to
study the lowest two moments of the two-point function. From now on, we will drop
the ‘hat’ over the operators H, h(1) and V(2). Before turning to the propagation
equations, let us mention that BEGOE(1 + 2)-F also generates in level fluctuations
Poisson to Gaussian transition in NNSD. Results for a 100 member BEGOE(1 + 2)-
F ensemble with £2 =4, m = 10 and total spins F =0, 2 and 5, for A varying from
0.01 to 0.1 are shown in Fig. 10.2. As A increases from zero, there is generically
Poisson to GOE transition (as we use sp energies to be ¢; =i + 1/i, the A =0
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Fig. 10.3 BEGOE(Q2)-F BEGOE(2)-F

variance propagator 1.0 ‘ L ‘

0(£2,m, F)/Q(82,m, Fyax) [ e—e0Q=12,m=12 7

Vs F/Fyqy for various values o= =Q=l2m=24 4
—— 0=12,m=120 J

of §£2 and m. Formula for L e 040 m=40 Ay _

Q(£2, m, F) follows from 08 | - ::gjg: :::go |

Eqgs. (10.6) and (10.7). Note * — + Q=40, m=400

—— Q=40, m=2000
— - - dense limit

that the results in the figure
are for Ao = A1 = A and
therefore independent of A;
here 2 (1) = 0. Dense limit
(dot-dashed) curve
corresponds to the asymptotic
formula given in Chap. 12
with m = 2000. Figure is
taken from [1] with
permission from IOP
publishing
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limit will not give strictly a Poisson). As seen from the figure, the transition marker
Ae =0.039, 0.0315, 0.0275 for F =0, 2 and 5 respectively. Thus A, decreases with
increasing F'-spin and this is opposite to the situation for fermion systems. For a
fixed £2 value, as discussed in Chaps. 5 and 6, the A, is inversely proportional to K,
where K is the number of many-particle states [defined by /4(1)] that are directly
coupled by the two-body interaction. For fermion systems, K is proportional to the
variance propagator but not for boson systems as discussed earlier in Sect. 9.5 and
at present, also for BEGOE(1 + 2)-F we don’t have a formula for K. However, if
we use the variance propagator Q(§2,m, F) [see Egs. (10.6), (10.7) and Fig. 10.3
ahead] for K (as it is used for fermion systems), then qualitatively we understand
the decrease in A, with increasing F-spin.

10.1.3 Propagation Formulas for Energy Centroids and Spectral
Variances

Given a general (1 + 2)-body Hamiltonian H = h(1) + V(2), which is a typi-
cal member of BEGOE(1 + 2)-F, the eigenvalue centroids will be polynomials
in the number operator and the F? operator. As H is of maximum body rank
2, the polynomial form for the eigenvalue centroids is (H)™f = E.(m, F) =
ao + aym + aym? + a3 F(F + 1). Solving for the a’s in terms of the centroids in
one and two particle spaces, the propagation formula for the eigenvalue (or energy)
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centroids is,

20 PO(m, F)

(HY™F = Ec(m, F) = [(h(D)"]m + 2([V/ =) 9@ =D

21 P'(m,F)
122+1)°

P%(m, F) = [m(m+2) —4F (F + )],

Pl(m, F) = [3m(m —2) +4F(F + 1)],

+2{(V/=@)

(10.5)

I LTI 2T St
i<j

i<j

Just as for the eigenvalue centroids, polynomial form for the spectral variances
2 \m, F 2
Oh—nysvym, F)=(H"" = [Ec(m, F)]

is Z;=0 ap,m? +Z§=o bym?F (F +1)+co[F (F +1)1>. Applying £2 — —2 trans-
formation to the propagation equation for the spectral variances for fermion systems
with spin given by Egs. (6.9)—(6.12), propagation equation for Ul%lzh D4V Q) (m, F)
in terms of inputs that contain the single particle energies ¢; defining 2(1) and the
two particle matrix elements Vlf w has been derived in [1]. Using this equation it is
easy to obtain the formula for ensemble averaged spectral variances (also ensem-
ble averaged covariances in eigenvalue centroids as discussed in Chap. 12). For the

choice Ag = A = A, the 01%, (m, F) for BEGOE(2)- F takes the simple form

o= ,\._x

o7 (m, F) 220(82,m, F);

0@R.m Fy= Y (2-1(2-2-D)@+2)P"="(m, F)

f=0,1
_ 2 (10.6)
+(sz N2+ 2+D) oy . F)
202 —1)

N (2 - 1)2(9 +2) PY=2 = . )
where
pr=L =0y = L 2m/2 = (F)1POm, F)

8(2 -=2)(2-DR2(L2+1)

Pr=L= gy — 8R2(m — 1)(2 +2m — 4)(F?) + (2 —2) P2(m, F) P (m, F)

8(2 — NR(2 + 1)(2 +2)2
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P'=21=0n, F) = [m*(m* — 1) — (F*)]P°(m, F) /[82(2 + )],

PY=21= o, F) = {[[FA (322 + 782 4 6) /2 + 3m(m — 2m* (m* + 1)
x (2 — 1)(2 —2)/8+ [(F?)/2][(52 + 3)(2 — 2)mm*
+2(2 -2+ 12 -6)])
/[(2 - he@e+2)(2+3)];

P(m, F) =3(m —2)m*/2+(F?), m*=2+m/2, (F*)=F(F +1).
(10.7)

Note that P° and P! are defined by Eq. (10.5). A plot of Q(£2,m, F)/
Q(82,m, Fpayx) Vs F/Fyay for various £2 and m values is shown in Fig. 10.3. It
is clearly seen that the propagator value increases as F-spin increases and this is
just opposite to the result for fermion systems discussed in Chap. 6. An impor-
tant consequence of this is BEGOE(2)-F gives ground states with F' = Fy,,x [for
the fermionic EGOE(2)-s, random interactions give S = 0 ground states]. We will
consider this now.

10.1.4 Preponderance of Fpqux = m /2 Ground States and Natural
Spin Order

Effect of random interactions in the pn-IBM model with F-spin quantum number
has been studied by Yoshida et al. [8]. They found that random interactions con-
serving F-spin generate predominance of maximum F-spin (Fj,,,) ground states.
It should be noted that the low-lying states generated by pn — sdIBM correspond
to those of sdIBM and all sdIBM states will have F = F},,,. Thus random inter-
actions preserve the property that the low-lying states generated by pn — sdIBM
are those of sdIBM. Similarly, using nuclear shell model with isospin conserv-
ing interactions (here protons and neutrons correspond to the two projections of
isospin t = %), Kirson and Mizrahi [9] showed that random interactions gener-
ate natural isospin ordering. Denoting the lowest eigenvalue state (les) for a given
many nucleon isospin T by Ej.s(T), the natural isospin ordering corresponds to
Ejos(Thin) < Ejes(Tipin + 1) < ---; for even-even N = Z nuclei, T,,;,, = 0. There-
fore, one can ask if BEGOE(1 + 2)-F generates F' = F,,;, ground states and also
a spin ordering [for boson systems, natural spin ordering (NSO) corresponds to
Eles(Finax) < Ejes(Fpax — 1) - - -1, i.e. are the results in [8] are generic to interact-
ing boson systems with F'-spin and so also NSO. In this analysis, Majorana force or
the space exchange operator has to be considered.

10.1.4.1 U ($2) Algebra and Space Exchange Operator

In terms of boson creation and annihilation operators b | and b; | m o withi =
i,7,mg 7 M e

1,2,..., 82, it easy to identify that the 42~ number of one-body operators A} G
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—_(»T 7 r, o
Afjy= b 155 1), r=0.1, (10.8)
generate U (252) algebra. In (10.8), Ei’%’mg = (_1)%+mgbi,%,—mg and r = % % %

The U (242) irreps are denoted trivially by the particle number m as they must be
symmetric irreps {m}. The £2> number of operators A?j generate U (£2) algebra and
similarly there is a U (2) algebra generated by the number operator 2 and the F-spin
generators F !,

n—x/—ZA”, ZA” " (10.9)

Then, we have the group-subgroup algebra U (2§2) D U(£2) ® SU(2) with SU(2)
generated by F ;IL- Asthe U (2) irreps are two-rowed, the U (§2) irreps have to be two-
rowed and they are labeled by {m,m>} withm =m| +m> and F = (m; —m3)/2;
m1 > my > 0. Thus, with respect to U (£2) ® SU(2) algebra, many boson states are
labeled by |{m,m2}, &) or equivalently by |(m, F), &), where & are extra labels
required for a complete specification of the states. The quadratic Casimir operator
of the U (£2) algebra is,

L[U(2)] ZZA (10.10)

and its eigenvalues are (CoLU () Imemal =y (my + 2 — 1) + ma(my + 2 — 3)
or equivalently,

(Co[u@)]) ™" = %(2!2+m—4)+2F(F+1). (10.11)

Note that the Casimir invariant of SU(2) is F? with eigenvalues F(F + 1).
Majorana operator M acting on a two-particle state exchanges the spatial co-
ordinates of the particles (index i) and leaves the F-spin quantum numbers (m &)
unchanged. The operator form of M is
~ K +
M=2 3 (bl )b, )" (10.12)
i,j,mg,m'y

Equation (10.12) gives, with « a constant, M= g{Cz[U(.Q)] — £2n}. Then, we have

~ (A .
M=wil 3 —1)+F. (10.13)

As seen from (10.13), exchange interaction with « > O generates gs with F =
Foin = 0(%) for even(odd) m (this is opposite to the result for fermion systems
where the exchange interaction generates gs with S = S,,,,x = m/2). Now we will
study the interplay between random interactions and the Majorana force in generat-
ing gs spin structure in boson systems. Note that for states with boson number fixed,
M  F? and therefore 2 can be treated as the exchange interaction.
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10.1.4.2 Numerical Results for F,,,, = m/2 Ground States

In order to understand the gs structure in BEGOE(1 + 2)-F, the probability P(F =
Fyax) for the gs to be with F-spin F,,;, = m/2 has been studied in [1] by adding
the exchange term Ap F 2 with A > 0 to the BEGOE(1 + 2)- F Hamiltonian,

{H}BEGOE(142)-FExeh = h(D) + A[{V/=° @} + {V/=' @)} ] + A F2. (10.14)

Note that the operator F2 is simple in the (m, F) basis. Figure 10.4a gives the
probability P(F = Fy,,y) for the ground states to have F' = F,,, as a function of
exchange interaction strength Ay and for various A = A9 = A values. Similarly,
Fig. 10.4b shows the results for NSO. Calculations are carried out for (£2 = 4,
m = 10) system using a 500 member ensemble and sp energies ¢; =i + 1/i. Let us
begin with pure random two-body interactions. Then £(1) = 0 in (10.14). Now, in
the absence of the exchange interaction (Ar = 0), as seen from Fig. 10.4a, ground
states will have F' = Fj,,,, i.e. the probability P(F = F,,,) = 1. The variance
propagator (see Fig. 10.3) derived earlier gives a simple explanation for this by ap-
plying the JS prescription. Thus, pure random interactions generate preponderance



10.1 BEGOE(]1 + 2)-F for Two Species Boson Systems 235

of F = F,4x ground states. On the other hand, the exchange interaction acts in op-
posite direction by generating F = Fj,;,, ground states. Therefore, by adding the
exchange interaction to the {V (2)} ensemble, P (F = F,,,) starts decreasing as the
strength Ap (Ap > 0) starts increasing. For the example considered in Fig. 10.4,
for Ar > 4, we have P(F = F,;4x) ~ 0. The complete variation with Ar is shown
in Fig. 10.4a marked A(1) =0 and A = 1. Similarly, on the other end, for A =0
in Eq. (10.14), we have H = h(1) in the absence of the exchange interaction. In
this situation, as all the bosons can occupy the lowest sp state and therefore gs spin
F = Fy4x giving P(F = Fp4y) = 1. When the exchange interaction is turned on,
P(F = Fy4x) remains unity until A equals the spacing between the lowest two sp
states divided by m and then P (F = F,,,) drops to zero. Variation of P(F = F,4x)
with A g for several values of A between 0.1 and 0.5 show that there is a critical value
(A%) of Ap after which P(F = Fy4,) = 0 and its value increases with A. Also, the
variation of P(F = Fy,4,) with Ar becomes slower as X increases. In summary, re-
sults in Fig. 10.4a clearly show that with random interactions there is preponderance
of F = F,,x =m/2 ground states. This is unlike for fermions where there is pre-
ponderance of § = S,,i,, = O(%) ground states for m even (odd). With the addition
of the exchange interaction, P(F = F,,,y) decreases and finally goes to zero for
Ar > A% and the value of A, increases with A.

10.1.4.3 Natural Spin Ordering

For the system considered in Fig. 10.4a, for each member of the ensemble, eigen-
value of the lowest state for each F-spin is calculated and using these, obtained is
the total number of members N, having NSO as a function of Ag for A =0.1,0.2
and 0.3 using the Hamiltonian given in (10.14). As stated before, the NSO here
corresponds to (as F' = Fj,,, is the F-spin of the gs of the system) Ejes(Fnax) <
Eles(Fnax — 1) < Ejes(Fjpgx — 2) < ---. Results for the probability for NSO are
shown in Fig. 10.4b. In the absence of the exchange interaction, as seen from the
figure, NSO is found in all the members independent of A. Thus random interactions
strongly favor NSO. The presence of exchange interaction reduces the probability
for NSO. Comparing Figs. 10.4a and b, it is clearly seen that with increasing ex-
change interaction strength, probability for gs state spin to be F = F},,4 is preserved
for much larger values of Ay (with a fixed A) compared to the NSO. Therefore for
preserving both F = F;,, gs and the NSO with high probability, the Ay value has
to be small. It is plausible to argue that the results in Figs. 10.4a and b obtained
using BEGOE(1 + 2)-F are generic for boson systems with F-spin.

10.1.5 BEGOE(1 + 2)-MF

Consider a system of m bosons occupying §2 number of sp orbitals each with
spin .# = % so that the number of sp states N = 2§2. The sp states are denoted
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by viimgz),i=1,2,...,2 and mg = j:%. The average spacing between the v;
states is assumed to be A and between two m g states for a given v; to be Ay, .
For constructing the H matrix in good MF representation, we arrange the sp states
li,mg = :t%) in such a way that the first §2 states have m &z = % and the remaining
£2 states have m & = —%. Many-particle states for m bosons in the 22 sp states,
arranged as explained above, can be obtained by distributing m; bosons in the
mg = % sp states (§2 in number) and similarly, m, fermions in the m & = —% sp
states (£2 in number) with m = m + my. Thus, M = (m| — m»)/2. Let us denote
each distribution of m| fermions in m g = % sp states by my and similarly, m, for
my fermions in m g = —% sp states. Many-particle basis defined by (m;, m;) with
m1 — my = 2MF will form the basis for BEGOE(1 + 2)-Mp. As the two-particle
m s can take values £1 and 0, the two-body part of the Hamiltonian preserving M
will be ‘7(2) =0 me:O(Z) + X yms=1 2)+Ar_q ymy==1 (2) with the correspond-
ing two-particle matrix being a direct sum matrix generated by V™7 (2). Therefore,
the BEGOE(1 + 2)-M r Hamiltonian is

H=h1)+a{V"=Q} + 1 {V"='@) + 2 {V="12)}.  (10.15)

In Eq. (10.15), the { vmy (2)} ensembles in two-particle spaces are represented by
independent GOE(1)’s and Ay, s are their corresponding strengths. The action of
the Hamiltonian operator defined by Eq. (10.15) on the (mj, my) basis states with a
given M generates the BEGOE(1 + 2)-Mr ensemble in m-particle spaces. There-
fore, BEGOE(1 + 2)-MF is defined by six parameters (§£2,m, Ay o, Ao, A1, A—1)
[we put A =1 so that A, and )»mf’s are in the units of A]. In the (m;, my)
basis with a given Mg, the H matrix construction reduces to the matrix con-
struction for spinless boson systems. The H matrix dimension for a given M is
> F>Mp dy(§2,m, F). Finally, pairing can also be introduced in this ensemble us-
ing the algebra U (2£2) D SO(2£2) D SO($2) ® SO(2) with SO(2) generating Mr;
see [10]. Analysis of BEGOE(1 + 2)-Mfr will be useful in two component BEC
studies [7].

10.2 BEGOE(1 4+ 2)-S1 Ensemble for Spin One Boson Systems

Another interesting extension of BEGOE is to a system of bosons carrying spin
S =1 degree of freedom. With random two-body interactions preserving many bo-
son spin S then generates the ensemble called BEGOE(2)-S1 [2]. In the presence of
a mean-field, the corresponding ensemble is BEGOE(1 + 2)-S1. Some basic prop-
erties of this ensemble are discussed in this section. BEGOE(1 + 2)-S1 ensembles
will be useful for spinor BEC discussed in [11, 12] and in the analysis of IBM-3
model of atomic nuclei (here spin S is isospin 7 of the bosons in IBM-3) [13, 14].
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10.2.1 Definition and Construction

Let us consider a system of m (m > 2) bosons with spin 1 (S = 1) degree of freedom
and occupying £2 number of sp levels. For convenience, in the remaining part of
this section, we will use the notation s for the spin quantum number of a single
boson, s for the spin carried by a two boson system and for m > 2 boson systems
S for the spin. Therefore, s=1; s =0, 1 and 2; S =m, m — 1,...,0. Similarly,
the S'Z eigenvalue is denoted by mg, m; and Mg respectively. Now on, the space
generated by the sp levels i = 1,2, ..., §2 is referred as orbital space. Then, the
sp states of a boson are denoted by |i;s = 1,mg) with i =1,2,..., 2 and mg =
+1, 0 and —1. With £2 number of orbital degrees of freedom and three spin ()
degrees of freedom, total number of sp states is N = 3§2. Going further, two boson
(normalized) states that are symmetric in the total orbital x spin space are denoted
by |(ij);s,mg) withs =1 x 1 =0, 1 and 2; however, for i = j only s =0, 2 are
allowed.

For one plus two-body Hamiltonians preserving m-particle spin S, the one-body
Hamiltonian /(1) is defined by the sp energies ¢;;i =1, 2, ..., §2. Its operator form
is,

2
h(1) =) e (10.16)
i=1

where n; = st Rizmg = st b;fmsbi,ms- Similarly, the two-body Hamiltonian V (2)
is defined by the two-body matrix elements Vl.j.kl 2) = ((kD)s, ms|\7(2)|(i J)s, mg)
with the two-particle spin s taking values O, 1 and 2. These matrix elements are
independent of the m; quantum number. The V (2) matrix in two-particle spaces will

be a direct sum three matrices generated by the three Vs (2) operators respectively.
Then the BEGOE(1 + 2)-S1 Hamiltonian is

[HA+2)} =h() + %[V} + 1 { V=1 @) + 1 {V=22))  (10.17)

with three parameters (Ag, A1, A2). Now, BEGOE(1 + 2)-S1 ensemble for a given
(m, S) system is generated by defining the three parts of V(Z) in two-particle spaces
to be independent GOE(1)’s and then propagating each member of the {ﬁ 1+2)}
to the m-particle spaces with a given spin S by using the geometry (direct product
structure) of the m-particle spaces. A method for carrying out the propagation is
discussed ahead. With 71\( 1) given by Eq. (10.16), the sp levels will be triply degen-
erate with average spacing A. Without loss of generality we put A = 1 so that the
A’s in Eq. (10.17) will be in units of A. Note that BEGOE(1 + 2)-S1 reduces to
BEGOE(2)-S1 for ﬁ(l) =0 or in the limit A; — oo for i = 1, 2 and 3 (equivalently,
for sufficiently large values of A;).

For generating a many-particle basis, firstly, the sp states are arranged such that
the first £2 number of sp states have mg = 1, next £2 number of sp states have
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mg = 0 and the remaining 2 sp states have mg = —1. Now, the many-particle states
for m bosons can be obtained by distributing m bosons in the mg = 1 sp states,
m> bosons in the mg = 0 sp states and similarly, m3 bosons in the mg = —1 sp
states with m = m + my + m3. Thus, Mg = (m; — m3). Let us denote each dis-
tribution of m bosons in mg = 1 sp states by mj, m; bosons in mg = 0 sp states
by my and similarly, m3 for m3 bosons in mg = —1 sp states. Configurations de-
fined by (m, my, m3) will form a basis for constructing H matrix in m boson
spaces. Action of the Hamiltonian operator defined by Eq. (10.17) on (m;, m;, m3)
basis states with fixed-(m, Mg = 0) generates the ensemble in (m, Mg) spaces. It
is important to note that the construction of the m-particle H matrix in fixed-
(m, Ms = 0) space reduces to the problem of BEGOE(1 + 2) for spinless boson
systems and hence Eq. (9.3) will apply. For this, we need to convert the H oper-
ator into Mg representation. Two boson states in Mg representation can be writ-
ten as |i, mg; j, m’); mg = mg + m Then the two particle matrix elements are

1 .
Vl/msfl S — m12(2) (i, mg ,],ms | V(2) | k, m’l l, m’z) It is easy to ap-
ply angular momentum algebra and derive formulas for these in terms of V7 ik 2).

The final formulas are,

s=2
Vi/,l,j,l,k,l,l,l(z) Vi}kl 2,
/ (1 +6:;)(1 + Ske) -
Vi,l;j,O;k,l;E,O(z) = D) [Vz]kl @ +V, ]kl (2)]
/ (I +8;)(1 + ke) =0
Vi,l;.j,—l;k,l;é,—l(z) = 6 [ ijkl (2) +3ijl (2) +V t]kl (2)]

! 2) = 1 2 2 s=2 2
Vi0:7.0:k,0:0,02) = 1]kl( )+ 3 Vi @ |-

VA +6i7)

/ —
Vi,l;j,—l;k,O;K,O(z) - 3

[ l]kl (2) zjkl (2)]
(10.18)

All other V’ matrix elements follow by symmetries. The fact that the sp energies &
are independent of mg, Eq. (10.18) above and Eq. (9.3) will allow one to construct
the H-matrix in (m, my, m3) basis for a given value of m and Mg = 0. Then,
52 operator is used for projecting states with good S, i.e. to covert the H-matrix
into direct sum of matrices with block matrices for each allowed S value. Eigen-
values of the two-body part of 52 in the two-particle s =0, 1 and 2 spaces are —4,
—2 and 2 respectively. This procedure has been implemented and computer pro-
grammes are developed. Some numerical results obtained using these programmes
will be discussed in the next subsections. Let us add that the BEGOE(1 + 2)-
S1 ensemble is defined by five parameters (£2,m, Ao, A1, A2) with A in units
of A.
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10.2.2 U(R2) @ [SU3) D SO(3)] Embedding Algebra

Embedding algebra for BEGOE(1 + 2)-S1 is not unique and following the earlier
results for the IBM-3 model of atomic nuclei [13, 14], it is possible to identify two
algebras. They are: (i) U(32) D U(£2)®[U (3) D SO3)]; (i) U(352) D SO(3£2) D
SO(£2) ® SO(3). Here we will consider (i) and in Appendix F (ii) is discussed.

Firstly, the spectrum generating algebra U (3§2) is generated by the (3£2)? num-
ber of operators uz (i, j) where

uh (i, )= (bfgoibismr)h; k=0,1,2andi, j=1,2,...,2.  (10.19)

Note that u* are given in angular momentum coupled representation with k = s x
s=0,1,2. Also, b;.{,;m; = (—1)1+’”5b,-;1,_m5. The quadratic Casimir invariant of
U@B82) is

C(UBR) =Y u . j) - uk (D). (10.20)
i,j.k

Note that 7% - UK = (—l)k«/(2k + 1)(TkUk)0. In terms of the number operator 7,

A= bl bzt (10.21)
i,mg
we have
C(UBR) =i +32 - 1). (10.22)

All m-boson states transform as the symmetric irrep {m} w.r.t. U (3§2) algebra and
(G (UB))™ =mm +32 —1). (10.23)

Using the results given in [15] it is easy to write the generators of the algebras U (£2)
and SUQ3) in U(382) D U(£2) ® SU(3). The U (£2) generators are g(i, j) where,

g, N=3(0! _bjs=t)s iji=12....82 (10.24)

F
i;s=1

and they are £22 in number. Similarly, SU(3) algebra is generated by the eight oper-

ators h(];:l’z where,

he =D (b oiBiis=1) (10.25)
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It is useful to mention that (4°, h;, hfl,) generate U (3) algebra and U (3) D SU(3).
The quadratic Casimir invariants of U (§2) and SU(3) algebras are,

G (U(%2)) =Zg(i )-8l

L(SU®B)) = Z kX . hk.

k12

(10.26)

The irreps of U (£2) can be represented by Young tableaux {f} = {f1, f2,..., fel
> i =m. However, as we are dealing with boson systems (i.e. the only allowed
U (382) irrep being {m}), the irreps of U (£2) and U (3) should be represented by the
same { f}. Therefore, { f} will be maximum of three rows. The U (§2) and SU(3)
equivalence gives a relationship between their quadratic Casimir invariants,
C2(U($2)) = C(UB)) + (2 = 3)a,
. 2 4 72 (10.27)
GUR)= Y h - =26(SUG) + +
k=0,1,2 3 3

These relations are easy to prove using Egs. (10.24)—(10.26). Given the U (£2) irrep
{f1f> /5], the corresponding SU(3) irrep in Elliott’s notation [16] is given by (A =
fi— f2,u= fo— f3). Thus,

{mlvae) = (ARl [wsu ]
i+ o+ fi=m, fiz > f3>0, (10.28)
A= fi1— f2, w=fa— f3.

Using Eq. (10.28) it is easy to write, forAa given m, all the allowed SU(3) and
equivalently U (£2) irreps. Eigenvalues of C»(SU(3)) are given by

(C2(SUB)) M = o) =[R2+ 1+ + 300+ w)]. (10.29)

Let us add that SU(3) algebra also has a cubic invariant @3 (SU(3)) and its matrix
elements are [17],

A 2
(C3(sUB))™ = C300) = g = W@+ u 302 +3). (1030)
The SO(3) subalgebra of SU(3) generates spin S. The spin generators are
=2, =y (s0@) =55t (89 =S+, (1031

Given a (Au), the allowed S values follow from Elliott’s rules [14, 16] and this
introduces a ‘K’ quantum number,
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K =min(A, w), min(A, u) —2,...,0o0r 1,
S =max(A, u), max(A, u) —2,...,0or1 for K =0, (10.32)
=K, K+1,K+2,...,K+max(A,u) for K #0.

Equation (10.32) gives d(;,,)(S), the number of times a given S appears in a (Ap)
irrep. Similarly the number of sub-states that belong to a U (§2) irrep { f1 f> f3} are
given by do (f1 f2 f3) where [10],

do(f1) do(fi+1) do(fi+2)
do(fifafs3)=|de(fo—1) do(fr) do(fa+1)]. (10.33)
do(f3—2) do(fs—1) do(f3)

Here, do({g}) = (?*¥7") and dg({g}) = 0 or g < 0. Note that the determinant in
Eq. (10.33) involves only symmetric U (§2) irreps. Using the U(32) D U(£2) ®
[U(3) D SO(3)] algebra, m bosons states can be written as

m; {f1 2. f3)er; ) K SMs).

Here, the number of « values is dg (f1 f2.f3), the K values follow from Eq. (10.32)
and —S < Mg < S. Similarly, m and (Au) give a unique { fi f> f3}. Therefore H-
matrix dimension in fixed-(m, S) space is given by

dp(m, S) = Z do(f1/2/3)dou (S), (10.34)
{fif2f3}em

and they will satisfy the sum rule Y ¢(2S + Ddp(m,S) = (**T"1). Also,
the dimension D(m, Ms = 0) of the H-matrix in the basis discussed earlier is
D(m, Mg =0) =) ¢, dp(m, S). For example, for (2 =4, m = 8), the dimen-
sions for S =0 — 8 are 714, 1260, 2100, 1855, 1841, 1144, 840, 315 and 165
respectively. Similarly, for (£2 = 6, m = 10), the dimensions for S =0 — 10 are
51309, 123585, 183771, 189630, 178290, 133497, 94347, 51645, 27027, 9009 and
3003 respectively.

10.2.3 Results for Spectral Properties: Propagation of Energy
Centroids and Spectral Variances

Using the method described in the previous subsection, in some examples
BEGOE(2)-S1 and BEGOE(1 4+ 2)-S1 ensembles are constructed and numerical
analysis of the eigenvalue density and spectral fluctuations are carried out. Results
from a 100-member BEGOE(2)-S1 ensemble with m = 8 and 2 = 4 are shown
in Fig. 10.5. In the calculations, the strengths of the two-body interaction in the
three channels are chosen to be equal, i.e. Ao = A1 = A, and the spectra of each
member is first zero centered and scaled to unit width. It is seen from the figure
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Fig. 10.5 Ensemble averaged eigenvalue density p’"’s(f ) vs E=E-E, (m, S)/o and ensem-
ble averaged Nearest Neighbor Spacing Distribution (NNSD). Results are for a 100 member
BEGOE(2)-S1 with £2 =4, m = 8 and spin S =0, 4 and 8. Eigenvalue densities are compared
with Gaussian and Edgeworth corrected Gaussians (ED) forms. Values of (y») parameters are
shown in the figures and y; ~ 0 in all cases. In the plots, the bin size is 0.2 and the eigenvalue
densities are normalized to dimension dp, (m, S). In the NNSD figures, the spacing x is in the units
of local mean spacing and the results are compared with Poisson and GOE (Wigner) forms

that the ensemble averaged eigenvalue densities are close to Gaussian. Similarly
the NNSD is close to Wigner form. Combining these results with those in Chap. 9
and Sect. 10.1 we can conclude that for finite isolated interacting boson systems the
eigenvalue density will be generically of Gaussian form and fluctuations, in absence
of the mean-field, follow GOE. With a mean-field [i.e. for BEGOE(1 + 2)-S1], as
seen from Sect. 10.1, the interaction strength has to be larger than a critical value for
the fluctuations to change from Poisson like to GOE. Numerical examples verifying
this for BEGOE(1 + 2)-S1 are given in [2].

As the eigenvalue density is close to Gaussian, it is of interest to derive formulas
for energy centroids and spectral variances in terms of sp energies ¢; and the two-
particle V (2) matrix elements Vl; «- They will also allow us to study, numerically,
fluctuations in energy centroids and spectral variances. Simple propagation equa-
tion for the fixed-(m, S) energy centroids (H )™ in terms of the scalars 7 and S>
operators [their eigenvalues are m and S(S + 1)] is not possible. This is easily seen
from the fact that up to 2 bosons, we have 5 states m =0,S=0;m=1,5S=1;
m=2,5=0,1,2) but only 4 scalar operators (1, 7, /i, 52). For the missing op-
erator we can use éz (SU(3)) but then only fixed-(m, (Au)S) averages will propa-
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gate [18]. The propagation equation is,

m,(\e), S m (). S _ 1,(10),1

(H(1+2) =(h() + V@) m(h(1))"

m m?* Co(aw)  S(S+DT7,~ - 12.00.0
4 — V),
6 18 9 6 :|( ( )>

+_

r 2
N _5_m+51+cz(ku)+5(s+1)](‘7(2)

)2,(20),2
6 18 18 6

(m m? GG 2,(01),1
—+ — V(2 .
1715 . ]( @)

(10.35)

Now, summing over all (Au) irreps that contain a given S will give (ﬁ (14 2))™S.
This is useful in verifying the codes developed for constructing BEGOE(1 + 2)-
S1 members. Propagation equation for spectral variances ([ﬁ (1+2)1%)™3 is more
complicated. Just as with energy centroids, it is possible to propagate the variances
([H (1 4 2)]2)m- )-S5 Towards this, first it should be noted that up to m = 4, there
are 19 states as shown in Table 10.1. Therefore, for propagation we need 19 SO(3)
scalars that are of maximum body rank 4. For this the invariants 7, 3’2, éz(SU 3))
and C 3(SU(3)) will not suffice as they will give only 15 scalar operators. The miss-
ing three operators can be constructed using the SU(3) D SO(3) integrity basis op-
erators that are 3- and 4-body in nature [17, 18]. One definition of these operators is
given in [17] and let us call them X3DR and X4DR (k). In terms of these, it is possible
to define the operators X3 and X4 such that their averages over (Au)S spaces are
integers giving

A 5 ~

X3 :—ﬁxg”*, X4 =5XPR(1). (10.36)
Formulas for the averages X;((Au), S) = ( X;)*:S can be written in terms of
SU(3) 2 SO(3) reduced Wigner coefficients and programmes for these are given
in [19]. Averages for X3 and X4 over the 19 states with m < 4 are given in Ta-
ble 10.1 and they will not depend on £2. Note that Eqgs. (10.29) and (10.30) respec-
tively will give C»(An) and C3(A ). Propagation equation for the spectral variances
over fixed-(Au), S spaces can be written as,

19
(F2)m RS > it
i=1

G=1, G=m, G=m’  C=m’  C=m"
Go=Ca(p),  Gr=mCa(Ap),  Cy=m>Cr(h).

Go=S(S+1), G10o=mS(S + 1), (10.37)
C=miSS+1).,  Cn=SE+DC0p.  C3=[SE+D]
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Table 10.1 For boson - A

numbers m < 4, listed are m {1 () S {X3) (X4)
(£}, G, S, (X3)*#S and
(X4)®0S 0 {0} (00) 0 0
{1} (10) 1 5 -25
2 2} (20) 0 0
2 21 —147
(113 o1 1 -5 25
3 (3} (30) 1 9 —81
3 54 —486
21} (11) 1 0 —135
2 0 —81
{111} (00) 0 0 0
4 {4} (40) 0 0 0
2 33 —363
4 110 —1210
(31} @ 1 -7 —121
2 21 —459
3 18 —246
{22} (02) 0 0 0
2 -21 —147
(211} (10) 1 5 -25

G4 = [Cz()nu)]z, ©15 = C3(Ap), ©16 =mC3(Ap),
G17=X3(0w), S),  Cis=mX3((),S),  Co=Xa((hp), ).

Using <ﬁ2>m,(Au),S for m < 4 as inputs, one can solve Eq. (10.37) to obtain the
a;’s. Then, Eq. (10.37) can be used to calculate (1/-1\2)’"“”)'5 for any m, (Ap) and S.
However we need numerical values for X3((Au), S) and X4((Au), S). As an exam-
ple X 3((Apw), 8) and X4((Ap), S) values are shown for m = 6 in Table 10.2. Spectral
variances (H 2)’” S over fixed-S spaces can be obtained easily using (H 2)’” ). S

Let us add that there are other methods [20] based on the (my, my, m3) conﬁg—
urations introduced before. Note that m is number of bosons with mg = +1, m>
is number of bosons with mg = 0 and m3 is number of bosons with mg = —1 so
that m = my + mo + m3 and Mg = m| — m3. Also, (m1, m>, m3) can be thought
of as a three orbit configuration with degeneracy for each orbit being §2. Using
the results in [21] and Eq. (10.18), it is possible to write the propagation equa-
tion for (ﬁ Zymi,ma.m3 These will give directly ((ﬁ 2ym-Ms by summing the traces
over all (my, my, m3) that give the same Mg value. Now, the simple subtraction law
(H2)™S = (H2)m-Ms=S _ ((2)m-Ms=5+1 will give (H2)™S. The propagation
equations are explicitly given in [2].

Using the propagation equations for (ﬁ Pym.S p=1,2,itis possible to calculate
spectral variances for each member of the ensemble. This will allow us to examine
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Table 10.2 For boson
number m = 6, listed are
(), S, (X3)*5 and
(Xq) 03

Fig. 10.6 Ensemble
averaged fixed-S variances
scaled by that of the
maximum spin as a function
of S/Smax- Results are for a
200 member BEGOE(2)-S1
ensembles with
(£2=4,m=12) and
(2=4,m=16)

max

245
m () s (X3) (Xa)
6 (60) 0 0 0
(60) 2 45 —675
(60) 4 150 —2250
(60) 6 315 —4725
A1) 1 -9 —297
(41) 2 27 —891
(41) 3 36 —702
(41) 4 132 —2466
(41) 5 117 —1431
(30) 1 9 —81
(30) 3 54 486
(03) 1 -9 —81
(03) 3 54 —486
(11) 1 0 —135
(11) 2 0 —81
(00) 0 0 0
22) 0 0 0
22) 2 0 —603
22) 3 0 —990
(22) 4 0 —450
BEGOE(2)-S1
T T T T T T T
1.0 B Q=4 s -
L o m=12
0.8 B A m=16 K ]
AL s
S 06 A g
g 0.4 :_ Y 'A""‘ A _
T Leanads o
02 | ]
0.0 [ 1 L 1 L 1 L 1 L 1 L 1
0.0 0.2 0.4 0.6 0.8 1.0
SIS

numerically, the variation of ensemble averaged spectral variances with spin S even
for large (§2, m) values. Figure 10.6 shows results for the variation of the average
of spectral variances with S for £2 =4 and m = 12 and 16. It is clearly seen from
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the figure that the variances are almost constant for lower spins and increases for §
close to Sy4x; a similar result is known for fermion systems [22]. Also, the width
of the fluctuations in spectral widths is much smaller (see Sect. 12.6 for numerical
examples). Let us add that near constancy of spectral widths is a feature of many-
body chaos as discussed in Chaps. 5, 6 and 14.

10.2.4 Summary and Comments on Ground State Spin Structure

In summary, for BEGOE(1 + 2)-S1 we have: (i) the form of the fixed-(m, S) eigen-
value density is close to a Gaussian; (ii) for strong enough interaction, level fluc-
tuations follow GOE; (iii) fluctuations in energy centroids are large as shown, with
numerical examples, in Chap. 12 ahead; (iv) spectral widths are almost constant for
lower spins (S < S;4x¢/2) and increase with S close to the S,,,,. In addition, in
BEGOEC(1 + 2)-S1 spaces [also in BEGOE(1 + 2)-F spaces] it is possible to in-
troduce pairing algebras and analyze pairing effects in systems modeled by these
ensembles. Appendix F gives some details of these pairing algebras. Finally, it is
possible to investigate the ground state spin structure in BEGOE(1 + 2)-S1. Firstly,
the exchange or the Majorana operator (H,;,) that changes the space labels (i, j)
in a two-particle space without changing the spin labels m; is related in a simple
manner to C2(SU(3)),

~ 24 1, .
Hexeh = §C2(U(3)) + 30 =3 (10.38)

Now, the simple model Hamiltonian H, M= aﬁexch + 8 §2 generates the basic spin
structure of the ground states as ﬁexch o' éz(SU(3)). For =0 and @ < 0, the
ground state for a m boson system is labeled by the SU(3) irrep (m,0). As this
contains all the spins S =m,m — 2, ...,0 or 1 and they are all degenerate, we have
just SU(3) ground state, labeled by (m, 0) irrep, with no specific choice for spin. On
the other hand, if « < 0 and 8 > 0, the ground state spin is S = 0 for m even and
S =1 for odd spin. Similarly, if « < 0 and 8 < 0, the ground state spin is S = m.
The three basic structures, (i) SU(3) ground state labeled by (m, 0) irrep, (ii)) S =0
(forevenm) or § = 1 (for odd m) ground state; (iii) S = m ground state for spin-one
boson systems, depending on (e, 8) values, were also discussed recently for spin-
one Bose-Hubbard model [23]. Going beyond the simple Hyy, it is possible to add
random two-body interaction and also pairing and mean-field parts and investigate
to what extent the three basic structures (i)—(iii) survive as we change the strengths
of the added three parts. Numerical calculations for this are challenging.
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Chapter 11
Embedded Gaussian Unitary Ensembles:
Results from Wigner-Racah Algebra

A long standing question for the embedded ensembles is about their analyti-
cal tractability. Amenability to mathematical treatment is one of the four con-
ditions laid down by Dyson [1] for the validity of a random matrix ensemble.
To address this issue, in this chapter we will consider embedded unitary ensem-
bles. It is important to recall that out of the three classical ensembles, GUE is
mathematically much easier. Simplest embedded unitary ensemble is the embed-
ded Gaussian unitary ensemble of two-body interactions [EGUE(2)] for spinless
fermion systems. For m fermions in N sp states, the embedding is generated
by the SU(N) algebra. Although EE are known for many years, only recently
[2], after the first indications implicit in [3, 4], it is established that the SU(N)
Wigner-Racah algebra solves EGUE(2) and also the more general EGUE(k) [as
well as EGOE(k)]. These results, with U (N) algebra, extend to BEGUE(k) for
spinless bosons in N sp states (see Sects. 11.2 and 11.3 and [5]). For EGUE(2)-
s for fermions with spin and EGUE(2)-SU(4) for fermions with Wigner’s spin-
isospin SU(4) symmetry, the embedding algebras, with £2 number of spatial de-
grees of freedom for a single fermion, are U(£2) ® SU(2) and U(£2) ® SU4)
respectively [6, 7]. Similarly, the embedding algebras for BEGUE(2)-F for two-
species boson systems with F-spin and BEGUE(2)-SU(3) for spin one bosons
are U(£2) ® SU(2) and U(£2) ® SU(3) respectively [8, 9]. Again, the Wigner-
Racah algebra of these algebras solve the corresponding embedded unitary en-
sembles. As discussed in Sect. 11.3, all these ensembles can be unified into
EGUEQ)-[U (£2) ® SU(r)]. All these results, discussed in some detail in the next
seven sections, obtained after more than 30 years of the introduction of em-
bedded ensembles, conclusively establish that two-body random matrix ensem-
bles are amenable to mathematical treatment and thus satisfy Dyson’s criterion.
Here, Wigner-Racah algebra of the embedding Lie algebras plays the central
role.

V.K.B. Kota, Embedded Random Matrix Ensembles in Quantum Physics, 249
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11.1 Embedded Gaussian Unitary Ensemble for Spinless
Fermions with k-Body Interactions: EGUE(k)

In this section we deal with EGUE(k), i.e. fermions with a general k-body Hamil-
tonian although for nuclei, atoms and mesoscopic systems k = 2 is most important.
For a system of m spinless fermions in N sp states, one has the unitary groups
SU(N), U(Ni) and U(N), N, = (V), with EGUE(k) invariant under U (Ny) and
the embedding in m-particle spaces is defined by SU (N ); note that a GUE in m parti-
cle spaces is invariant under U (N,;,) but not the EGUE(k), k < m. Analytical results
for EGUE(k) follow from the tensorial decomposition of H with respect to SU(N)
and the SU(N) Wigner-Racah algebra; in the end Wigner coefficients disappear as
expected [note that the Wigner coefficients involve the sub-algebras of SU(N)] and
all the expressions for the moments involve only SU(N) Racah coefficients. Firstly,
Sp creation operator a; for any i-th sp state transforms as the irrep {1} of U (N) and
similarly a product of r creation operators transform, as we have fermions, as the
irrep {1"} in Young tableaux notation. Let us add that a U (N) irrep {A, A2, ..., An}
defines the corresponding SU(N) irrep as {A; — AN, A2 — AN, ..., AN—1 — AN}
with N — 1 rows. The U(£2) <> SU(S2) correspondence is used throughout and
therefore we use U (§2) and SU(S2) interchangeably. A normalized r-particle cre-
ation operator AY(fra,) behaves as the SU(N) irrep (tensor) {1"}. Similarly a r-
particle annihilation operator behaves as {17} = {1¥~"}. Tensorial multiplication
gives, (1"} @ (1"} = Y gv® =Y {2"1Y2"}®,v=0,1,...,r. Note that go = {0}
for SU(N) and g, = g,. Also, the v here is same as the tensorial rank v used in
Chaps. 5 and 6. SU(N) irreducible tensors By (g,w,) are defined by,

Bugwon = 3 A'([1F)a) A1) ({1 e [FJaJgvn). (11D
o0y
where (—— | ——)’s are SU(NN) Wigner coefficients and «’s are the other labels for

completely specifying the k particle states [they can be specified by any subgroup
chain contained in SU(N)]. An important property of Bi(g,w,) is that they are
orthogonal with respect to the traces over k particle spaces. Given a k-body Hamil-
tonian

Hk) =" Viu, (AT ({15} va) A({15}p). (11.2)
Va,Vp

where V,, ,, (k) are matrix elements of H (k) in k-particle space, the V (k) matrix is
chosen to be GUE, i.e. V,,,, (k) are independent Gaussian variables with zero center
and variance given by (with bar denoting ensemble average),

Vvavb (k)vvcvd (k) = ()\2/Nk)5vavd8vbvc~ (11~3)

Action of H (k) on a given complete set of m-particle basis states will generate
EGUE(k) in m-particle spaces. The m-particle matrix elements of H (k) are, with
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s=m—k,
H1 2 (k)
= ("ol H @0 {1 ]23)
L V9 I N T e P A T P T T E P oY
Y Vh: s (11.4)

Unitary decomposition of H (k) in terms of the SU(N) tensors By (g,w,) is,
H(k) = Z We,w, (k) Br(gvay) (11.5)
8v,Wy
and the W’s will be independent Gaussian variables with

)\2
Wew, K)Wg, 0, (k) = Vksg”g”éw”w"' (11.6)

Using Eqgs. (11.1)—(11.5) and the sum-rules for SU(N) Wigner coefficients, the re-
sult given by Eq. (11.6) can be proved.

Correlations generated by EGUE(k) in m particle spaces follow from the matrix
A of the second moments, i.e.

Ayt gt 032 = ({1 el |HUO {1 o2 {17 e, |H (O {17 }ek).  (11.7)

m>=m m=m

First substituting the H (k) in terms of By’s as given by Eq. (11.5), then using the
Wigner-Eckart theorem for SU(N) and finally applying Eq. (11.6) for carrying out
the ensemble average will give

{1 b | H G [ {1 o J ({17 e, | H ()17 Jor )

oD SR (T EXPRIES

X({1"1}%1"{1m}ar2n|ngv)<{lm}ar3n{lm}a’ilngv);
({17} BeCgw || {1)? (11.8)
B iy L k] o N2

= Lo (e )
=A"(N,m,m —k),

A”(N,m,r):<mr_v><N_mr+r_v>.

In Eq. (11.8), U(— — —) are SU(N) Racah coefficients, (—— || —— || ——) are
SU(N) reduced matrix elements and d(g,) = d(v) = (?)’)2 —( N )2. In the final

v—1
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step used is the formula given in [10] for SU(N) U-coefficients. An alternative
expression for the covariance in Eq. (11.7) follows from the Biedenharn-Elliott sum
rule for SU(N) [2, 11, 12],

({1 o[ H GO {1 o J{{ 1 e | H GO {17 }er)

A
= > AW m k)

8uwu=01,...m—k 'K

x ({17 Je {17 Yot [ g ({17 Jom {1 )2 |gueon). — (11.9)

To derive Eq. (11.9), the two SU(N) Wigner coefficients in Eq. (11.8) are first trans-
formed into the two Wigner coefficients appearing in Eq. (11.9) multiplied by a
SU(N) Racah coefficient by a Racah transform. This new Racah coefficient mul-
tiplied by the two Racah coefficients in Eq. (11.8) is then reduced to the square
of a Racah coefficient using Biedenharn-Elliott sum rule. Then the final Racah co-
efficient [see Eq. (11.10) below] is simplified using the formulas in [10]. Equa-
tion (11.9) gives the eigenvalue decomposition of the matrix of second moments
with the first part in the sum giving eigenvalues £, and the product of the two
Wigner coefficients giving eigenvectors. The eigenvalues E,, are given by,

A2 A2 (Nm)2 (> 2
— __AM — .
EM_ NkA (N,m, k)= Ny d(gu)(Nk) [U(fmfN—m—i-kfmfm—ks fkgu)] .
(11.10)

Equations (11.8) and (11.9) lead to remarkably simple expressions for the variance
and the excess parameter for the eigenvalue density. Obviously, ensemble averaged
centroid is zero and the variance is

(H2) = Z Hy i Hy o :MA (N, m, k). (11.11)
J

v;n, Um

This result follows easily from (11.9) and the sum rule ), ({1"1}1),1'"{1’"}@ |
8uwyu) = /N, 0. Now the fourth moment, dropping /\2/N1< factor, is

()"
1
) N_ i vl okl van Ur{z HU'!” vfﬂ/ Hvlk’l/ vlln Hvln Uin
vi"’vm’vmmm
1 _ . ' /
=N_ Z {2|:Z(fmvin|Bk(ngV)|fmvé1>(fmvl’{1|Bk(ngv)|fmvfn>i|
m

i ol okl
Upn s Um s VU » Uy

8v,Wy

X
 —

> (v | B (guw)| fnvh, N finvhy | B ()| fin v;',,)]

8 WOp
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+ |:Z <fmvin|Bk(gua)v)|fmvz1)<fmvfn/|Bk(gva)u)|fmv,ln)]

8v,Wy

x [ > (fmv/é!Bk<guwu)|fmv£f{)(fmvfn|Bk(guwu>|fmvé,)]}- (11.12)

8u>Op

Here we have used Eqgs. (11.5) and (11.6) and applied Wigner Eckart theorem. Now,
formula for the excess parameter follows easily by using both Eqs. (11.8) and (11.9)
together with the orthonormal properties of SU(N) Wigner coefficients. The final
formula is [2],

(H4)m
yz(N,m,k): — -3
[(H2)m]?

min{k,m—k

=|:(Nm)1 5° }A”(N,m,m—k)A“(N,m,k)d(gV):|_1.

~ [AO(N, m, k)]2

(11.13)

In the dilute limit Eq. (11.13) reduces to the binary correlation result given by
Eq. (4.32). Thus EGUE(k) generates Gaussian densities. For a complete proof,
higher order cumulants should be studied. In principle, the formalism given above
applies to k¢ but the exact formula is not yet derived. At this stage it is useful to
remark that for EGOE(k),

Vvav;7 (k) chvd (k) = (Az/Nk){avavd‘sv;,vc + 8vavC5vhvd}a (11~14)

and in the dilute limit EGUE(k) result for y» reduces to that of EGOE(k); see [3]
for details.

Going beyond the lower order moments of the state density, it is also possible to
derive formulas for the lower order moments

S (m,m') = (H7)" (HY" = (HY" (H)" (11.15)

with 7 = 1 and 2, of the two-point correlation function,

§"" (E.E') = p"(E)p" (E') = p" (E)p™ (E'). (11.16)

The final formulas are [13],

Sum,m') AN, m,m—k) A%N,m' m’' — k)
"\ N,AYN,m, k) N,y AN, m' k)’

(11.17)

<H2>m <H2>m/

and
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Zn(m,m’)

Sn(m,m') = ————
22(m " ) (H2)m <H2>m’

k v —_ v / /_
2 ZA(N,m,m kK)A”(N,m’, m k)d(v). (11.18)

= NN, AYN, m, k) AN, m’, k)

The result for (H)"(H)™" and hence for 211, follows easily from the simple trace
formula (H (k))" = (';:)(H (k))* or alternatively by applying Eq. (11.8) and using
the fact that only v = 0 terms will contribute to (H)™. Similarly, X», formula has
been derived using

(2" (H2)" = NNy 1™ 3 | Hapm) | Hea (')

a,b,c,d

= (H)"(HY)" 4 2[NuNa1™" Y {Hapm)Hea(m')}* (11.19)
a,b,c,d

where H, (m) = (m,a|H|m, b) is a m-particle matrix element. Note that we have

used x2y2 = x2y2 4+ 2(xy)2. Applying Eq. (11.8) to the second term in the sec-
ond equality and using orthonormal properties of SU(N) ngner coefficients will
give finally the formula for 222 (m,m’). The formulas for Z‘rr (m,m),r =1, 2 were
derived first in [2, 3]. It is important to remind that X, is the (rr)-th bivariate mo-
ment of the two point function. Before turning to EGUE/EGOE with spin degree of
freedom, it is important to mention that in the standard applications of GUE/GOE,
correlations between levels with different m will be zero [i.e. by 11(m,m’) =0 and
ﬁ‘gz (m, m") = 0] as independent GUE/GOE description for levels with different m
has to be used. Therefore results given by Eqgs. (11.17)—(11.19) provide useful sig-
natures for EGUE/EGOE and in Chap. 12 this will be discussed in more detail.

11.2 Embedded Gaussian Unitary Ensemble for Spinless Boson
Systems: BEGUE(k)

For spinless bosons in N sp states with a general k-body Hamiltonian, we have
BEGUE(k). As pointed out in [2], it is striking that all the EGUE(k) results of
Sect. 11.1 translate directly to those of BEGUE(k) by applying the well known
N — —N symmetry [14, 15], i.e. in the fermion results replace N by —N and then
take the absolute value of the final result. For example, the m boson space dimension

NEBis
NE = ‘(_mN)‘ = (N +": N 1). (11.20)
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More importantly the eigenvalues E,, of the matrix of the second moments follow

from Eq. (11.10) by using N — —N symmetry,
AL N, m, k) — m—v\[(—N-m+k—v _(m—v N+m+v—1.
k k k k
(11.21)

This result was explicitly derived in [5]. Moreover, for bosons {k} ® (k¥ 1} — g, =
(2v,v¥2}, v =0,1,...,k. Also, the N — —N symmetry and Eq. (11.20) will
give dB(g,) = {(N +v —1),}> — {(N + v — 2),_1}? and this is same as Eq. (15)
of [5]. Similarly Egs. (11.11), (11.13), (11.17) and (11.18) for (H?), y»(N,m, k),
Y11 and Xy; respectively extend directly to BEGUE(k) with AY(N, m, k) replaced
by A% (N, m, k) defined in Eq. (11.21) and similarly replacing N, by NB andd(g,)
by d58(g,). Detailed derivations given in [5] are in agreement with these. In addi-
tion, for fermions to bosons there is also a m <> N symmetry and this connects
fermion results (say for M, and ¥,) in dilute limit to boson results in dense limit
as discussed in Sect. 9.4 and [14].

11.3 EGUE(2)-SU(r) Ensembles: General Formulation

Consider a system of m fermion or bosons in £2 number of sp levels each r-fold
degenerate. Then the SGA is U(r§2) and it is possible to consider U(r§2) D
U (£2) ® SU(r) algebra. Now, for random two-body Hamiltonians preserving SU(r)
symmetry, one can introduce embedded GUE with U (£2) ® SU(r) embedding and
this ensemble is called EGUE(2)-SU(r). Ensembles with r = 2 and 4 for fermions
correspond to fermions with spin (or isospin [16]) and spin-isospin SU(4) symme-
try [17-19] respectively. Similarly, for bosons r = 2, 3 are of interest. Also r = 1
gives back EGUE(2) and BEGUE(2) both. It is important to note that the distinction
between fermions and bosons is in the U (£2) irreps that need to be considered. Now,
we will give a formulation in terms of SU($2) Wigner-Racah algebra that is valid
for any r > 1 [20].

Let us begin with the normalized two-particle states |f>F>; v282) where the
U (r) irreps Fr» = {12} and {2} and the corresponding U (£2) irreps f are {2} (sym-
metric) and {12} (antisymmetric) respectively for fermions and (1%} (antisymmetric)
and {2} (symmetric) respectively for bosons. Similarly v, are additional quantum
numbers that belong to f> and 8, belong to F>. As f, uniquely defines F>, from
now on we will drop F> unless it is explicitly needed and also we will use the
f>» <> F» equivalence whenever needed. With AT( frv262) and A(fov262) denoting
creation and annihilation operators for the normalized two particle states, a general
two-body Hamiltonian operator H preserving SU(r) symmetry can be written as

H=Hp)+ Hypy = 3 Hpy ot Q) AT(fav] B2) A(f2viBa).

favh0] s fo=12),(12)
(11.22)
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Fig. 11.1 (a) EGUE(2)-SU(4) : Q=10, m=6
EGUE(2)-SU(4) ensemble =2
for fermions in the defining

space. (b) Decomposition of d=% 5
the H matrix in (£2 = 10, 0 =1}
. . d =45

m = 6) space into direct sum @

of matrices with fixed SU(§2) H(2)

irrep fi,. Thereis a _ -

EGUE(2)-SU(4) ensemble in @as | o 0 1] 0 0 1] 0 0

each f,, space corresponding 19305 .

to each diagonal block in the 0 4139 0 0 0 0 0 0 0

figure. Shown also next to 17160 .

each f, in the figure, is the 0 0 {:0}7‘: 0 0 0 0 0 0

cigenvalue (C2(SU(4)))/n of PPYIPE

the quadratic Casimir 0 0 0 |51 O 0 0 0 0

invariant of SU(4). Similarly, (3,1%,21

below each f;,, shown is the 0 0 0 0 o240 | 0 0 0 0

matrix dimension 2,21
0 |0 | 0|0 |0 | 0|0 o0
0 0 0|0 |0 |0 %20 o0
0o o |00 |0 0|0 )Mo
o o0 0 o0 0 0|0 ¥

H(m)

In Eq. (11.22), Hfzu" S = (fzv{ﬁz | H | fovbB,) independent of the B,’s. The
272

uniform summation over 8, in Eq. (11.22) ensures that His SU (r) scalar and there-
fore it will not connect states with different f>’s. However, H is not a SU(r) invari-
ant operator. Just as the two particle states, we can denote the m particle states by

| fn v,£ ,3,5 Vs Fpy = fm for fermions and F, = f,, for bosons. Action of H on these
states generates states that are degenerate with respect to ﬂnf but not v,ﬁ. Therefore
for a given f,,, there will be dg, (f;;) number of levels each with d, ( fm) number of
degenerate states. Formula for the dimension dg; (f;,) is [21],

2

do(fm) =[]

i<j=1

w’ (11.23)
J —1

where f,, ={f1, f2, ...}. Equation (11.23) also gives d, (F};,) with the product rang-
ing from i = 1 to r and replacing f; by F;. As Hisa SU(r) scalar, the m particle H
matrix will be a direct sum of matrices with each of them labeled by the f;,’s with
dimension dg (f;,). Thus

H(m)=_"Hy, (m)®. (11.24)
fn

Figure 11.1 shows an example for Eq. (11.24) with » = 4 for fermions. As seen from
Eq. (11.22), the H matrix in two particle spaces is a direct sum of the two matrices
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Hy,(2), one in the f> = {2} space and the other in {12} space. Similarly, for the 6
particle example shown in Fig. 11.1 there are 9 f,,’s and therefore the H matrix is
a direct sum of 9 matrices. It should be noted that the matrix elements of Hy, (m)
matrices receive contributions from both Hy)(2) and Hy2,(2).

Embedded random matrix ensemble EGUE(2)-SU(r) for a m fermion or boson
systems with a fixed f,,i.e. {H, (m)}, is generated by the ensemble of H operators
given in Eq. (11.22) with H)(2) and Hj;2y(2) matrices replaced by independent
GUE ensembles of random matrices,

HQ)} = {Hy @} gue ® {Hi2y @} gug- (11.25)

In Eq. (11.25), {——} denotes ensemble. Random variables defining the real and
imaginary parts of the matrix elements of Hy,(2) are independent Gaussian vari-
ables with zero center and variance given by (with bar representing ensemble aver-

age),

2
Hfzvzlv%(z)H évgvg(Z) = szfz/avzlvsav%v% (Ap). (11.26)

Also, the independence of the {H{}(2)} and {H{;2)(2)} GUE ensembles imply,

[H{Z}vév%(z)]P[H{ﬂ}uévé @]°

= {[H{Z}uéﬁ(z)]f)}{[H{12}u§u‘2‘(2)]Q} for P and Q even,
=0 for P or Q odd. (11.27)

Action of H defined by Eq. (11.22) on m particle basis states with a fixed f,,
along with Egs. (11.26)—(11.27) generates EGUE(2)-SU(r) ensemble {H, (m)}; it
is labeled by the U (£2) irrep f;,, with matrix dimension dg (f;,)-

As discussed before for EGUE(k) for fermions in Sect. 11.1 and similarly for
bosons in Sect. 11.2, tensorial decomposition of H with respect to the embedding
algebra U (£2) ® SU(r) plays a crucial role in generating analytical results; as before
U (£2) and SU(£2) are used interchangeably. As H preserves SU(r), it transforms as
the irrep {0} with respect to the SU(r) algebra. However with respect to SU(S2), the
tensorial characters, in Young tableaux notation, for f, = {2} are F, = {0}, {212}
and {42972} with v =0, 1 and 2 respectively. Similarly for f> = {12} they are F,, =
{0}, {21272} and {22174} with v = 0, 1, 2 respectively. Note that F, = f» x f»
where f; is the irrep conjugate to f> and the x denotes Kronecker product. Young
tableaux for the F, are same as those in Figs. 9.2 and 5.1b for f, = {2} and {12}
respectively with N replaced by 2 in the figures. Now, we can define unitary tensors
B’s that are scalars in SU(r) space,

B(fiFvon) = Y. AT(fav] B2) A(f2v5 ) fav] o v |Fyavy)
Ué»U{aﬂz

x (F2p2 > B2 | 00). (11.28)
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In Eq. (11.28), ( f, — ——) are SU(§2) Wigner coefficients and (F, — ——) are SU(r)
Wigner coefficients. The expansion of H in terms of B’s is,
H= ) W(LFio)B(Fm). (11.29)
f2.Fy,0p

The expansion coefficients W’s follow from the orthogonality of the tensors B’s
with respect to the traces over fixed f> spaces. Then we have the most important
relation needed for all the results given ahead,

W (f2Foo)W(f3F,0,) =8, 88,8, 80,0, (1 1)y (F2). (11.30)

This is derived starting with Eq. (11.29) and using Egs. (11.25)—(11.28). Also used
are the sum rules for Wigner coefficients appearing in Eq. (11.28).

Turning to m particle H matrix elements, first we denote the U (§2) and U (r)
irreps by f;, and F), respectively. Correlations generated by EGUE(2)-SU(r) be-
tween states with (m, f,;) and (m’, f,) follow from the covariance between the
m-particle matrix elements of H. Now using Eqs. (11.29) and (11.30) along with
the Wigner-Eckart theorem applied using SU(£2) ® SU(r) Wigner-Racah algebra
(see for example [22]) will give

H, . fH, ;
f,,,v;nv,ﬁ fm/u‘,vf,

m' " m

= <fmFman;,3|H|fnszvin,B)(fm’F;n’U,{;/,B/|H|fm’Fm’v,in//3/>

O‘fz)z
A ml|| B F, m m
fFZ do (/) Z<f I BCAED 1 fon) o Fon'|
25 \uwv. 0,0 '
X <fmU£nFua)v | fmv£>p<fm,vin,Fva)v | fm/vfﬁ,)p,;

‘/me—Z U(fmﬁfmfz’ fm72Fv)p
ml | BCRED) | fn)p = F - — .
Ul |BEN N nls fz e UnTsfn fo: f 20D

|BURED||1for) o (11.31)

Here the summation in the last equality is over the multiplicity index p and this
arises as f;; x F, gives in general more than once the irrep f,. In Eq. (11.31),
F(m)=—m(m — 1)/2, do(f») is dimension with respect to U(§2) as given by
Eq. (11.23) and (... |...) and U(...) are SU(£2) Wigner and Racah coefficients
respectively. Similarly, .47, is dimension with respect to the S, group,

= m! i i (G — &)

= AN ;o bi=fi+r—i. (11.32)
. A T

Note that r denotes total number of rows in the Young tableaux for f;,.
Lower order cross correlations between states with different (m, f,,) are given by
the normalized bivariate moments X, (m, f, : m’, f), r = 1,2 of the two-point
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function S” where, with p™ /m (E) defining fixed-(m, f;;) density of states,

St S (., B7) = g By o () — g (B g7 (1)

S1(m, fouim', fr) = (HY™In (H)Y™ T /\/ 2y S (11.33)

Sna(m. f ' for) = (H" B2 (2] <H2)'" GRSt

In Eq. (11.33), (H?)™./m is the second moment (or variance) of the eigenvalue
density p™/m(E) and its centroid (H)™/m = 0 by definition. We begin with
(HYmfo (HY™ - Jw' . As (H)™Im is the trace of H (divided by dimensionality) in
(m, fm) space, only F, = {0} will generate this. Then trivially,

7 A
(Y™ Jn (H)™ o =Z; ’("?)Pﬁ(m )PP,

Ph2(m, f) = F(m) Y Ao/ A

Sm—2

(11.34)

In terms of m particle H matrix elements, (H2)™-/m is

(2" = [d (] ™ Y Hpyupoz Hpipon -

v w2

Applying Eq. (11.31) and the orthonormal properties of the SU(£2) Wigner coeffi-
cients lead to

m (kf
2™ 2 2" , 11.35
(H?) Zdﬂ(f%;z (F2:m, fon) (11.35)
where
N JV
D" (fym, fu) = [Fm)]’ 3 JfV = Xuu (1 fna Syt ).
fm—Z’/,;_Q
(11.36)
The Xy function involves SU(§2) Racah coefficients,
XUU(fZ; Jfm-2, fr:,_z; FU)
_ZU(fm»fZ Jms 25 fm—2, U)pU(fm’ f2 Jms J2; fm 25 v)p . (11.37)

B = U(fms 25 fons 25 fn=2,AODU (fins f2s fins 25 Fy_3 (OD)

Summation over the multiplicity index p in Eq. (11.37) arises naturally in applica-
tions to physical problems as all the physically relevant results should be indepen-
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dent of p which is a label for equivalent SU(£2) irreps. Let us add that,

2= fo i m, fr) = [P (m, fu)]" (11.38)

Equatlons (11.34)—(11.36) and Table 4 of [7] will allow one to calculate covariances
b3 11 in energy centroids. For the covariances 222 in spectral variances, the formula
is [7]

X{Z} + X“Z} +4X{12}{2} .

Sn(m, fusm'y fur) =
fm fm <H2>m,f,,, <H2>m’,fm/

= 20:)" “lgvee . V(g
1= o (P :Ozl z[d(Fu)] 2" (faim ) 2" (fim' fr): (11 30)
3232

Xy = T—eon Az 3 [dF)] % n, 1) 8" (. ).

mvzol

Here d(F,) are dimension of the irrep F,, and we have d({0}) = 1, d({2, 19_2}) =
22— 1,d{4,2%72) = 22(2 + 3)(£2 — 1)/4, and d({22,197%) = Q%2 —
3)(£2 + 1)/4. Note that 2V(f> : m, f,,) are defined by Eq. (11.36). The function
Z"(m, fn) also involve SU(§2) U -coefficients,

</‘/f 2 2
Z" (m, fm)— F(m) - m U(fm—Z, f/_2§Fv);
/ 22;2 N t/‘(fm "

You(fm—2, fl_5: Fy)

Z U (S (1972), fn A1) 2. F)pU (fon, 2971, fin (215 £y U)p
U(finr (1272}, fons 12 fin—2. AODU (S (2271, fin s {2): S5 (OD)
(11.40)
In Yuu (fm-2. £ _5;Fu), fm—2 comes from f,, ® {1¥72} and f/ , comes from
fm @ {2271}, Similarly, the summation is over v =0 and 1 only as v = 2 parts for
f>»=1{2} and {12} are different. It is useful to note that,

B, fr) = PP, fo) PYVm, f). (11.41)

Formulas for Xyy and Yyy are given in [7] and they are simplified version
of the formulas given in [23]. For illustration, some of these results are col-
lected in Table 11.1. These and Egs. (11.33)—(11.41) will allow one to derive
analytical/numerical results for spectral variances and covariances in energy cen-
troids and spectral variances for any EGUE(2)-SU(r) for fermion or boson sys-
tems.
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Table 11.1 Formulas for Xyy (f2; fin—2, f _o; Fy) and Yyu (fin- z,fm 2 Fy) withv=1,2

{fm-2Hfy ) Xuu () s fr g2 (27,1972
{f @b)}{f (ab)} w B + LR S + (= 20) 50
A0+ 2 g + 0= ) 7m — gévl)

{f@b)}{f (@c)) ‘;{g_;;{m_l)av,z Fo01+G =20 )
2} fy o) Xvu (2 fua. fr_p: (20,0272
{f(ab)}{f (ab)} 2y o2 + T

+G-2v) (rz+2>[r$?brahl+)1> 7@+ r,(,Z‘fbr:hl—)_n 7~ wdual)
(f @a)}{f (aa)} oy B2+ (3 — 20) ATED 4 (e, ) — AGEDs, )
{f(@a)}{f (bb)} 22801 + gyt
(f @a)){ f @h)) iy (Bu o+ (0 — 20 EHLED 2D, )
{fm—Z}{f,;,z} YUU(fm—Zs jmfz; {2, 19_2})
{f @b){(f (ab)} ~ U A+ ) ol + (1 - o) e — )
{f@b)}{f (ac)) ~SUEEN A+ ) o —
(f@b)}{f (aa)) —mggi—:;;wz{ngm -3

11.3.1 Results for BEGUE(2): r =1

Simplest of the EGUE(2)-SU(r) are the EGUEs with » = 1 and they corresponds
to EGUE(2) and BEGUE(2) depending on totally antisymmetric or symmetric f;,
one considers. Also they correspond to k = 2 in Sects. 11.1 and 11.2 respectively.
For illustration we consider BEGUE(2) in some detail. For this ensemble, in order
to apply the formulas for (H 2, 311 and Xy, first we need the formulas for X vuU
and Yyy. Some of these, taken from Tables 4 and 7 of [7], are given in Table 11.1.
For applying these formulas, we need the ‘axial distances’ t;; for the boxes i and j
in a given Young tableaux. Given a f;,, = {f1, f2, ..., f2} we have,

In terms of 7;; the functions ), 17}5“), b, T, and I1// are defined as,
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U(Q) irreps
Spinless bosons

fm:{m}, fm—-2={m-2}

< m
L[ L[] [e]e]
@) a a

Spinless fermions

ml| fn={1™}
| fm—2={1m_2)

| @|a
i | [@]b

Fig. 11.2 Young tableaux denoting the SU(2) irreps f,, = {m} and {1™} as appropriate for
(i) spinless boson and (ii) spinless fermion systems. Removal of two boxes generating m — 2
particle irreps f,,—o for these systems are also shown in the figure. For (i) only the irrep f> = {2}
will apply and similarly for (ii) only {12} will apply. Figure is taken from [20] with permission
from American Institute of Physics (Color figure online)

n = [T a-1m
i=1,2,...,2;i#a,i#b
m? = [T a-1m
i=1,2,...2;ia,i#b
HtEbC) = l_[ (1_1/‘[111’); a;éb;éc, (1143)

i=1,2,...,2;i#a,i#b,i#c

m= [ «a-1/m)

i=1,2,...,2;i#a
m= [T -2/
i=1,2,....2;i#a

With these we can calculate Xy and Yy ; see [7] for full discussion. For BE-
GUE(2), the algebra U(£2) ® SU(r) with r = 1 reduces to just U (§2) or SU($2).
Similarly, f,, is the totally symmetric irrep {m} and f,,_» = {m — 2}. Therefore to
generate f;,—» only the action of removal of {2} from f;, is allowed. Denoting the
last two boxes of f;;; by a and a (note that we can remove only boxes from the right
end to get proper Young tableaux and also boxes in a given row must have the same
symbol to apply the results in Table 11.1) as shown in Fig. 11.2, we have

T =m+i—1,
’ m
M= a1 (11.44)
y m(m —1)
T 2 -—Dm+e2-2)
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Similarly 4%, =1 and 4%, , =1 as both are symmetric irreps. Now the formulas

in Table 11.1 will give Xy and there by 2V in Eq. (11.36),

m%(m — 1)?

2"=0((2); m, {m}) = 7 :

m?(m —1)? 2(2 +m) (2> —1)

v=1 (1. _ 11.4
2"=1({2}: m, {m}) 7 212 , (11.45)
2 2 02
N m20m — 12 Q22 — D(Q +m)(2 +m+ 1)
2= (2 m mh) = = 22 + 2m(m —1) '
These and Eq. (11.35) will give,
(2™ =33, <’;) (Q +Z N 1) =22y A% (2,m.2). (11.46)

This agrees with the result stated in Sect. 11.2. As P& (m, {m}) = —m(m — 1)/2,
we have easily,

Zn(lm). {m'})

B 2J/m@m — 1) (m")(m’ — 1)
QDY@ +m—DQ2+m—2(R2+m' —1)(2+m' —2)

. (11.47)

Again, this agrees with the result stated in Sect. 11.2. Further, ﬁ’zg is determined
only by X{2) defined in Eq. (11.39) and then, using Eq. (11.45), we have

En({m}, {m'})
_ 2
36(%) @ + 3 (T (* )

y [492(9 B 1)(9 +Z1+1)(.Q+r2n’+ 1)

2 m\ (m’
+4(82+2) (Q+3)<2)(2)

+4(2% = 1)(2+3)(m — 1)(2 +m)

< (m' - 1)(2 +m’)]. (11.48)
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For m = m’, it can be verified that Eq. (11.48) reduces to

(S2 m,m —2)1*d"(g,)

11.4
T ((m). {m}) = (szB)ZZ [4%(82,m,2)P e

as expected from Sect. 11.2; Eq. (11.49) agrees with the result given for BEGUE(k)
in [5]. Finally, it is useful to mention that in the m — oo and N finite limit we
have,

2
R+’

92(9 D+ (R 4222 +3)+4(R22 - (2 + 3
22+ D22 +2)2(R2 +3)

Sn({m}, im}) =

En({m), (m}) =
(11.50)
Non-vanishing of ﬁ’ll and 222 for finite N in the m — o0 is interpreted in [5,
24] as non-ergodicity of BEGUE ensembles. See the discussion in Chap. 9 for the
resolution of this problem.
In the next four sections we will consider specific SU(r)’s and present results
that are appropriate for some physical systems.

11.4 Embedded Gaussian Unitary Ensemble for Fermions
with Spin: EGUE(2)-SU(2) with r =2

Embedded Gaussian Unitary Ensemble for fermions with spin s = % degree of free-
dom corresponds to r = 2 in Sect. 11.3 and this ensemble, applicable to meso-
scopic systems with mobile electrons carrying spin degree of freedom, is denoted by
EGUE(2)-SU(2) or EGUE(2)-s. For this ensemble, the U (§2) irreps for m fermion
systems with spin S are f,,, = {2719} where m =2 p+q and S = ¢ /2. Formulas for
(H%)™S and the normalized bivariate moments X,.(m, S : m’, S'), r = 1,2 of the
two-point correlation function 5" 'S'(E, E') follow from the formulation given
in Sect. 11.3. It is easily seen that with ($?) = S(S + 1),

(HY™S(H)™S = 3 G por 5y P2,
f2(s2) da(f2)
P%2(m, S) = [(2sz + Dm(m —4sy +2) +412sy — 1)<Sz)]/8, s =0, 1.

(11.51)
To proceed further we need Xyy and Yyy. The f,,_» irreps obtained by removing
{2} or {1?} from f,, follow from Fig. 11.3. Note that all three choices (i)—(iii) shown
in the figure will apply for {12} and only (i) will apply to {2}. Using the formulas in
Table 11.1, the final formula for (H2)™-5), in terms of m* = (£ — %) is
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Fig. 11.3 Young tableaux
denoting the two-column
SU(82) irreps f, = {2"1%}
appropriate for
EGUE(2)-SU(2). Removal of
two boxes generating m — 2
particle irreps f;,,—» are also
shown in the figure. For

(i) both the irreps f> = {2}
and {12} will apply while for
(i) and (iii) only {12} will
apply (Color figure online)
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fm=(27,15} U(Q) irreps

| |
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‘ @®|a l
I |
s s
(@b |
frn—2={2771,15} fin—a={2772,15%2)
@ (i)

d
b -2
fm-2={27,157%}

1
:‘:
|
I

@]
iy L@

— 2 2
(2" Z( 2 > 2°(frm. 8):;

df2) 41,
2912} :m, S) = [Po(m S)]
2'({2):m, 5) =
2*({2):m. S) =
2°{1?} :m, S) = P! (m S)]
—1)
2417 :m. 8) = 16(.{2 2)

[(2 + DPOm, 8)/2][m*(m +2)/2 + (5?)],
[2(2 +3)PO(m, ) /4][m* (m* + 1) — (S?)].
[

————[8(2 +2)P'(m, S)P*(m, S) (11.52)

+82(m — 1)(2 — 2m + 4)(S?)],

2

QZ({]Z} .m, S) = m

+3m(m — 2)mx(

[(32% - 72 +6)((s?)’

m* —1)(2+1)(2 +2)/4

+ (S {—mm* (52 — 3)(2 +2)
+2(2 - D(R2+1)(2+6)}];
P2(m, S) =3m*(m —2)/2 — (S?).

Further, Egs. (11.51) and (11.52) will give >, for any (m, S, m’, S, §2). For S
the only unknowns are %" and they are given by

Z°(12}{12} :mS) = PO(m, S)P'(m, S),

2 (217} :mS) = —2\/ )

PO(m, S)P*(m, S).
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Finally, let us consider the excess parameter y,(m, S) = {(H*)™S /[(H2)™S]*} — 3
and this is the most important (as (H3)"-S = 0) lower order shape parameter for
fixed-(m, §) density of states p™S(E). General expression, derived using SU(2)
algebra given in [11], for the fourth moment (H*)"-S in terms of U-coefficients
involves the multiplicity labels p’s. However, for the physically interesting situation
with S =0 (i.e. f; = {2"},r =m/2), all the multiplicity labels will be unity and
then y»(m, S = 0) is given by [6],

() (p)?

SIS =0 4 1] = [(H2)=0) Rt
[aton S=0 1= [0 2 a7

5.1

do(fm) 2
(fml| B(S3 Fo)) ||| fm
* X ey B P 1)

S [l | BULF) |1 ) U on Fon i s Fun Fo)-
(11.54)

In Eq. (11.54), f3' = {2}, {1?} and similarly f2b . This expression is pleasing and
it is possible to obtain the triple barred coefficients using the tables in [23] and
Eq. (11.31). But still we need U(fmf_mfmfm; F, F,,) coefficient and deriving a
formula for this needs further advances in SU(N) Racah algebra. Thus, our present
knowledge of SU(N) Wigner-Racah algebra will not allow us to go too far in ana-
Iytically solving EGUE(2)-s and even the simpler EGUE(2).

11.5 Embedded Gaussian Unitary Ensemble for Fermions with
Wigner’s Spin-Isospin SU(4) Symmetry: EGUE(2)-SU (4)
with r =4

Wigner introduced in 1937 [17] the spin-isospin SU(4) supermultiplet scheme for
atomic nuclei. There is good evidence for the goodness of this symmetry in some
parts of the periodic table [25] and also more recently there is new interest in SU(4)
symmetry for heavy N ~ Z nuclei [18, 19]. Therefore it is clearly of importance to
study embedded Gaussian unitary ensemble of random matrices generated by ran-
dom two-body interactions with SU(4) symmetry and this corresponds to EGUE(2)-
SU(4) with r =4 in Sect. 11.3. Before giving some analytical results for EGUE(2)-
SU(4), we will first turn to a brief discussion of the SU(4) algebra.

Let us consider a system with m nucleons distributed in £2 number of orbits
each with spin (s = %) and isospin (t = %) degrees of freedom. Then the total num-
ber of sp states is N = 42 and the spectrum generating algebra is U (452). The sp
states in uncoupled representation are aZ 210 =li,a) withi=1,2,..., £ denoting
the spatial orbits and « = 1, 2, 3, 4 are the four spin-isospin states |mg, m¢) = |%, %),
|%, —%), |—%, %) and —%, —%) respectively. The (4.(2)2 number of operators Ciq; jg
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generate U (452) algebra. For m fermions all states belong to the U (4§2) irrep
{1"*}. In uncoupled notation, C;y; g = a o4j.p- Similarly U($2) and U(4) alge-

bras are generated by A;; and Byg respectlvely, where A;; = Za:l Cig; jo and
Bug = Z,Q: | Cia:ip- The number operator 71, the spin operator S=5§ ;lp the isospin
operator T = Tli and the Gamow-Teller operator 07 = (0 t)L”lﬂ, of U(4) in spin-
isospin coupled notation are [26],

A 0,0 1 _ 1,0 0,1
n_ZZ'Q{uOO’ SM_ZJZZ'I';#,O’ TM Zézfno;ﬂ
i i
11.55)
o L 5,1 ~ (
O, w= Z”Q{u o L gy = (a aj) i e
l

Note that @ ;. = (—1)!T#strq;. . These 16 operators form U (4) algebra.
Dropping the number operator, we have SU(4) algebra. For the U (4) algebra, the
irreps are characterized by the partitions {F} = {F1, F», F3, F4} with F1 > F, >
F3>Fy>0and m = Z?:l F;. Note that F,, are the eigenvalues of Byy. Due to
the antisymmetry constraint on the total wavefunction, the U (£2) irrep {f} = {f }
which is obtained by changing rows to columns in { F'}; note that F; < £2 and f; <4.
Before proceeding further, let us examine the quadratic Casimir invariants of U (£2),
U (4) and SU(4) algebras. For example,

K[U(2)] ZAUA =2 - Y alalgajqaip,
i,j,o,pB
C[U@®)] _ZBa,ﬁBﬂ,a = QU]+ CU@]=i2+4).

a’ﬂ
(11.56)

Also, in terms of spin, isospin and Gamow-Teller operators, C>[SU(4)] = S24+T?+
(ot)-(o7) and

(F)
C[U@])! F(F +5-2i)=(C[SUB] + A\ (11.57)
4

i=1

The space exchange or Majorana operator M that exchanges the spatial coordi-
nates of the particles (the index i) and leaves the spin-isospin quantum numbers
unchanged allow us to understand the significance of SU(4) symmetry,

/>=

where o, B are labels for spin and o, B’ are labels for isospin. As |i, a, &'; j, B, B) =
al, a,a; 5.0, Egs. (11.58), (11.56) and (11.57) in that order will give,

jradsi, B, B), (11.58)
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Fig. 11.4 Young tableaux
denoting the special SU($2)
irreps £ = (4" p),
p=0,1,2,3 considered in
EGUE(2)-SU(4) analysis
with U(£2) @ SU(4)
embedding algebra. The
corresponding SU (4) irreps
are also given in the figure
(Color figure online)
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UQ)®SU@)

SU(Q):{4"}
Su(4): {0}

SU(Q):{4"1}
su(4): {1}

SU(Q): {472}

SU(Q): {413}

Su(4): {13} Su(4): {1}
Table 112 P22(m, f,,) for Py
fu=(¥.p)p=012and PR m, fm)
3and { o) = {2}, {12} fr=12) f=(12%
4"} —3r(r+1) —5r(r—1)
47,1} —3¥@r+3) -¥@r-1
4,2} —@rr+6r+1) —5r2
4,3} —3(r+2)@r+1) —F@r+1)
Y, i i i T f
2k M =2« Z (aj,a,a’ai,ﬂ,ﬁ/)(ai,a,a/aj,ﬂ,ﬂ/)
ij.a.pa p
=k{C[U ()] — A =41 — C[U@W]}
o1 -2 Le [SU@®] (11.59)
=2k32n 6 2 2 . .

The preferred U (£2) irrep for the ground state of a m nucleon system is the most
symmetric one. Therefore (C>[U (£2)]) should be maximum for the ground state ir-
rep. This implies, as seen from Eq. (11.59), the strength « of M must be negative.
As a consequence, as follows from the last equality in Eq. (11.59), the ground states
are labeled by SU(4) irreps with smallest eigenvalue for the quadratic Casimir in-
variant consistent with a given (m, T;), T = |T|. Therefore, for N = Z even-even,
N = Z odd-odd and N = Z £ 1 odd-A nuclei the U (£2) irreps for the gs are {4"},
{47,2}, {47, 1} and {4”, 3} with spin-isospin structure being (0, 0), (1,0) & (0, 1),
(%, %), and (%, %) respectively. For convenience, the gs U (§2) irreps are denoted by



11.5 EGUE(2)-SU(4) for Fermions with Spin and Isospin 269

Table 11.3 (H2)m fu, 2"=L2(f, :m, f,,) and Z"="(m, f,,) for some examples

fm (Hz)'"’fm
{4n) ri2— ’+4)[x2 3(r+1)(9—r+3)+x{2l 250 =12 —r +5)]
{4, 1} M[A H6r(2 =1+ 1)+ 92 + 15}

+ A2, 502r(2 —r +5)— 2 —-9}]

12}
47,2} (2} 1Br* = 6(2 +2)r3 + (322 + 62 — 5)r?
+ (2 +2)(62+1T)r+2(2+1)]

F A7, TR —r +HUR +4)r — 17 =3)
(4", 3} A3 +D(@ —r+2)2r2 —2r2 +6r + 2+ 1)

+ A?IZ]Sr(Q —r+4)Qr2 =22 +6r 4+ 2 —1)]

Jm f2 v 2" (f2:m, fin)
20
() 2} 1 9r(r+1) (%mrigH)WH)
) 3rQ+D)(Q—r+1)(Q—r)(2+4)(2+5)
1(2+2)
- 1)2 _ —
{12} 1 25r(r—1) (;2(9@(2()2 D(2+4)
5 5rR(r—1)(2+43)(2+4)(2—r)(R2—r—1)
1(2-2)
Sm #"=! (m, fm)
2_
@) B ES - D@ -2+
f(p) where
(p) _ {4r } —4 _
= ,pt; m=4r+ p and p =mod(m, 4). (11.60)

For the special SU(S2) irreps in Eq. (11.60), and shown in Fig. 11.4, analytical
formulas are much simpler than for a general SU(S2) irrep [7].

The formalism given in Sect. 11.3 was applied in detail in [7]. For example,
formulas for P/2(m, f,,) are given in Table 11.2 for {f,; (P )} irreps. Evaluating
all the 2’s as given in detail in [7], analytical formulas for 2V (f, : m, f;,) and
also for (H?2)™./m are obtained for { f,, (P )} irreps. Some of these results are given
in Table 11.3. Equations (11.34)—(11.36) and Tables 4 and 7 of [7] will allow
us to calculate covariances X; in energy centroids for any irrep. On the other
hand, the results in Tables 11.2 and 11.3 will give formulas for ﬁ‘n for { f,E,p )}
irreps. Similarly, the % formula given in Table 11.3 will us to calculate 25, for
the irrep {4"}. Note that, 2"=0(f, : m, f,) = [P2(m, f,)]* and Z2"="(m, f,,) =
PR, £,) P17 om, ).
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11.6 Embedded Gaussian Unitary Ensemble for Bosons with
F-Spin: BEGUE(2)-SU(2) with r =2

For two species boson systems with F-spin, following the discussion in Chap. 10,
we have BEGUE(2)-SU(2) or BEGUE(2)- F. For this ensemble, results in Sect. 11.3
with r = 2 will be applicable. For such a m boson system, the SU(S2) irreps will be
two rowed denoted by f,,, = {m —r,r} with F = % — r. With this, there are three
allowed f,,,_ irreps as shown in Fig. 11.5. The irreps in (i) and (iii) in the figure
can be obtained by removing f> = {2} from f,,,. However for (ii) in the figure both
{2} and {12} will apply. For f,,_» = {m —r — 2, r} irrep [this corresponds to (i) in
Fig. 11.5] we have

Tpp=m—2r—+1,

w=m—r+i—1, i=3,4,...,%2,

@ m=2r+Dm—-r+2-1°

v m-=2r—1)(m-—r)yY (m—r—+1)

T m=2r+Dm—r+2-DH(m—r+2-2)

Similarly for f,,,—» = {m — r,r — 2} irrep [this corresponds to (iii) in Fig. 11.5] we
have

T =2r—m—1,

fbi=r+i—2, i=3,4,...,9

o Der—m=-2 (11.62)
CT 2r=m—-Dr+2-2)

, Qr—m=3)r)r -1

T 2r=m =D+ -2 +2-3)

Finally, for f,,—» ={m —r — 1,r — 1} irrep [this corresponds to (ii) in Fig. 11.5]
we have

Tagp=m—2r+1=2F +1,
Tgi=m—r—+i—1, i=r+i—2;, i=3,4,...,8,

gt _m=r+b (11.63)
“ m—r+2-1"

@ _ (r)

b r+2-2)
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Fig. 11.5 Young tableaux Sy ={m-r,1} U(Q) irreps
denoting the two-rowed R
SU($2) irreps f, ={m —r, r}
appropriate for ‘ ‘ @ ‘ (] ‘
BEGUE(2)-SU(2). Removal
of two boxes generating

m-r

m — 2 particle irreps fi,—2 @) \ fos ={M—r—2,r}
are also shown in the figure.
For (ii) both the irreps
f> = {2} and {12} will apply ‘ ‘ ‘g‘
and for (i) and (iii) only {2} °
will apply. Figure is taken
from [20] with permission (i) _b
from American Institute of Sz =tm-r-Lr-1}
Physics (Color figure online) ‘ ‘ ‘ ‘
AN
b b
W s =mnr2)

These and A%, , /A%, will give the formulas for the lower order moments of one
and two point functions as described in Sect. 11.3. The dimension ratios are,

Nm=r=2,r) _ (m—=r)m —r +1)(m —2r — 1)

)

L/V{m—r,r} m(m — 1)(m —2r + 1)
Monr=tr=ty _rlm=r+1) (11.64)
Mim—r.r) m(m — 1)

</V{m7r,r72} _ r(r—1)(m—2r+3)
</V{m—r,r} B m(m —1)(m —2r + 1) .

Using Egs. (11.61)—(11.64) and the expressions in Table 11.1, it is possible to derive
analytical formulas for the P’s, 2’s and #’s that define (H 2y, 311 and Xp,. The
final formulas (obtained in [20] using MATHEMATICA) are, with (m, F') defin-

ing fi,
PP (m, F) = <[3m(m —2) + 4F (F + 1],

P m, F) = —[m(m +2) — 4F (F + 1)],

!

8

1

8

2'=0((2):m, F) =[PP (m, F)],
[

({1} :m. F) =

2" ({2} :m, F) =

P{lz}(m, F)]z,

(241
16(£2 +2)

x [2(2 =20 PP (m, F){322 + m)(m —2) +4F (F + 1)}
+82(m — 1)(2 +2m —4HF(F + 1],
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_(@-D)PYm, F)

2= ({12} :m, F) )

[22 +m)(m +2) —4F(F + 1],

2'=2({2}:m, F) = % [(392 +72 +6)[F(F + 1)]2

+ %m(m — Q2R +m)2R2 +m+2)(2 — 1) (2 —2)

N F(F+1)

5 [mQ22+m)(52+3)(2-2)

+202(27 - 1)(2 —6)}},

2@ 3P m, F)
B 16
x [2Q2 +m)(22 +m —2) —4F(F + 1],

2"=2({1%} :m, F)

Z"=(m, F) = PP (m, F)P (m, F),

. Q212 =2)P"Pm, F)
4 l(m,F)=‘/92_4 2 {4[F(F+1)-32]

+3m(22 +m —2)}.

(11.65)

Note that Eq. (11.65) is closely related to the BEGOE(2)-F results given by
Eq. (10.7). More importantly, they are related to the EGUE(2)-SU(2) results by
£2 — —§2 transformation.

11.7 Embedded Gaussian Unitary Ensemble for Spin One
Bosons: BEGUE(2)-SU(3) with r =3

Spin one boson systems, as discussed in Chap. 10, posses U(382) D U(£2) ®
[SU@3) D SO(3)] symmetry. For these systems, it is possible to consider interac-
tions preserving the SU(3) symmetry. This gives, for the GUE version, BEGUE(2)-
SU(3) that corresponds to » = 3 in Sect. 11.3. As U(3) irreps will have, in Young
tableaux representation, maximum 3 rows, the U (£2) irrep also will have maximum
three rows. Given m bosons in 2 number of sp levels, the allowed U (£2) irreps are
{f1, f2. f3, fas oo ot =N, fo, B with fi+ o+ fa=m, fi= fo=f3=0
and f; =0fori =4,5,...,8. For f =0 and f3 =0, we have totally symmetric
irreps with {f1} = {m} and for these irreps all the results derived in Sect. 11.3.1
will apply directly. Similarly, for f> # 0 and f3 = 0, all the results of Sect. 11.6
will apply. Thus, the non-trivial irreps for BEGUE(2)-SU(3) are the m-boson ir-
reps fm = {f1, f2, f3} with f3 # 0. Given a f,, in general there will be six f;,,_2
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Fig. 11.6 Young tableaux . U(Q) irreps
denoting the three-rowed @ r

SU(82) irreps fp, = {r,r,1},
m = 3r appropriate for
BEGUE(2)-SU(3). Removal

of two boxes generating

m — 2 particle irreps f,,,_2 are (3K )
also shown in the figure. For 4 a
(i) only the irrep f> = {2} will

apply while for (ii) only {12} S =nr}, fon =ner-2}, f={2}

will apply. Figure is taken

from [20] with permission

from American Institute of (i)
Physics (Color figure online)

fm :{V,F,V},f,,,,g :[I’,}"—],V—]}, ]3:2/12}

and they are { 1 —2, f2, f3}, {1, 2= 2, L AL o, =20 {1 — 1, 2 — 1, f3},
{fi—1, fa, =1}, {f1, fo — 1, f3 — 1}. Therefore, as seen from Sect. 11.3, de-

riving analytical formulas for P’s, 2’s and %’s that determine (H?), fill and f]gz
will be cumbersome. One situation that is amenable to analytical treatment is for the
irreps {n + p,n,n} where m =3n + p with p =0, 1 and 2 [these are similar to the
{4", p} irreps considered for EGUE(2)-SU(4)]. Here we will present the results for
p = 0 and for others see [20]. For this class of irreps, the f,,_» are simple as shown
in Fig. 11.6. For f,—> ={n,n,n — 2}, IT} and II) are needed and they are given
by,

3 6 —1
m=—" - nn —1) . (11.66)
24+n-3 (24n-3)(2+n—-4)
Similarly, for fi,—2 = fi.n—1.n—1 We need t4p, Héb) and H,Ea) and they are,
3 2 1
w=-1. A= pe= 20D e
2(2+n-3) (£2+n-2)
In addition, ratio of the Sy, dimensions needed are,
f/%l,n,n—2 _ 2(n — 1)’ f/%t,n—l,n—l — n+1 . (11.68)
J%l,n,n Bn—-1) %,n,n @Bn-1)

With these, carrying out simplification of the formulas given in Table 11.1 will give
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the following formulas (with 7z = 1 for {2} and —1 for {1%}),

ph (m, {n,n, n}) = ~3 fnn(n — 1),

szo(fz im,{n,n,n}) = [Pf2 (m,{n,n, n})]z,
33+ m)2(2 +7)(2 = 3)n(n — 1)%(2 +n)
8(2 4 2m) ’

Q”Zl(fz :m, {n, n,n}) =

o@vzz(fz :m, {n,n,n})

_3@+mR(2 -3+m)(2 =3)nn —7)(2+n)(2 +n+m)
B 16(£2 + 2m) ’

%"’:O(m, {n, n,n}) = P{z}(m, {n,n, n})P{lz}(m, {n,n, n}),

v=1 22 —1 2
X (m,{n,n,n}):— m3(9—3)n(n —1)(!2 + n).

(11.69)

Using these equations one can calculate the variances (H?) and the covariances b
and X for irreps of the type {n, n, n}. For example, Eq. (11.35) can be simplified
to give a compact formula for spectral variances,

(H2>m,{n,n,n} — )‘%2}[%”(” —D(2+n—-3)(2+n —4)]
+ A En(n + (2 +n—2)(2+n— 3)]. (11.70)

Using the tables in [7] and the results in Sect. 11.3, one can calculate numerically
Y11 and Xy, for any f,. Applications of this will be discussed in Chap. 12.
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Chapter 12
Symmetries, Self Correlations and Cross
Correlations in Embedded Ensembles

Correlations between levels with different quantum numbers generated by EEs are
very important as these cross correlations are absent in the description of levels of
interacting particle systems if we use classical GOE or GUE or GSE ensembles. In
the description using classical ensembles, one assumes independent GOE or GUE or
GSE description for levels with different quantum numbers. As discussed already in
Chaps. 4 and 9, self correlations, i.e. correlations between levels with same quantum
numbers, are also important for EEs. In Sects. 12.1-12.3 results are presented for the
correlations between matrix structure, symmetries and self and cross correlations in
embedded ensembles using fermionic EGUE(2), EGUE(2)-s and EGUE(2)-SU (4)
ensembles. Similarly, Sect. 12.4 deals with bosonic BEGUE(2). Finally results for
EGOE(2)-s and BEGOE(2)-F ensembles for self and cross correlations are pre-
sented in Sects. 12.5 and 12.6 respectively. It is important to emphasize that “cross
correlations” is one of the very important new aspect of EE.

12.1 Matrix Structure for Fermionic EGUE(2)-SU(r), r =1,2,4

In order to understand the structure of EEs, here first we will consider the ma-
trix structure of fermionic EGUE(2), EGUE(2)-SU(2) [same as EGUE(2)-s] and
EGUE(2)-SU(4) matrices. Let us consider the example of 8 fermions in N = 24 sp
states. Then one finds three distinct features and they are as follows:

(i) For spinless fermion systems, we have EGUE(2) with a two particle GUE of
dimension 276 and the number of independent variables [denoted by i2(0)] is
76, 176. These generate the m fermion EGUE(2) ensemble with H matrices of
dimension d (24, 8) =7, 35,471. For fermions with spin symmetry, we have
EGUE(2)-s with £2 = 12. This ensemble is generated by independent GUEs
in two particle spin s = 0 and s = 1 spaces with dimensions 78 and 66 re-
spectively. Then the number of independent variables [denoted by i>(2)] for
this system is 10, 440. The H matrix dimensions for EGUE(2)-s ensembles for
the 8 particle system with spins § =0, 1,2, 3 and 4 are d (12, 8, §) = 70785,
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113256, 51480, 9009 and 495 respectively. Going further, with SU(4) symme-
try we have EGUE(2)-SU (4) ensembles with £2 = 6. These ensembles are gen-
erated by two independent GUE’s in f> = {2} and {12} spaces with dimensions
21 and 15 respectively. Then the number of independent variables [denoted by
i2(4)] for this system is 666. The H matrix dimensions for EGUE(2)-SU(4)
ensembles for the 8 particle system with fg = {22, 14}, {23, 12}, {24}, {3, 19},
{32, 13}, 3,22, 1}, {32, 12}, {32, 2}, {4, 1%}, {42, 1%}, {4, 2%}, {4, 3, 1} and {4?%}
are 15, 105, 105, 21, 384, 1050, 1176, 1470, 315, 2430, 2520, 4410 and 1764
respectively. Thus i, will be considerably reduced as the symmetry increases
(with fixed N), i.e. i2(4) K i2(2) K i2(0). Similarly the H matrix dimensions
decrease as we go from EGUE(2) to EGUE(2)-s to EGUE(2)-SU(4).

For further insight, let us consider the fraction of independent matrix elements
S (m, fu), for m > 2 for the EGUE(2)-SU(4) ensemble, defined as the ratio of
i2(4) to the total number (without counting the hermitian conjugates) of matrix
elements,

i(4)
[de (fm) >

Similarly, for EGUE(2) and EGUE(2)-s ensembles, we can define the frac-
tion of independent matrix elements as #(m) = i>(0)/[df(N, m)]? and
F(m,S) = i22)/lds(82,m, 12 respectively. In the above example, for
EGUE(2), EGUE(2)-s with S = 0 and EGUE(2)-SU(4) with fg = {4}, we
have .# = 1.4 x 1077, 2 x 107 and 2 x 10~ respectively. Therefore the H
matrices with more symmetry are characterized by relatively large fraction of
independent matrix elements and thus they go more towards GOE.

Due to the two-body selection rules, many of the m particle matrix elements of
the EGUE(2) ensembles will be zero. In order to understand the sparse nature
of the EGUE matrices, one can introduce a sparsity index S with S~! defined
as the ratio of number of m-particle states that are directly coupled by the
two-body interaction to the m-particle matrix dimension. Note that S~ m) =
K(m)/dy(N,m) for EGUE(2) and K (m) is K defined by Eq. (5.16). Sim-
ilarly, S’l(m, S)=K(m,S)/ds(£2,m,S) for EGUE(2)-s and as argued in
Chap. 6, K (m, S) can be equated to the variance propagator P(§2,m, S) and
formula for this is given by Eq. (6.19). For EGUE(2)-SU(4), given the two-
particle variances to be )»%‘-2 = A2, the variances (Iil\z)m’fm can be written
as o2(m, fn) = A2PSUD (m, £,,) with PSUS (m, £,,) given by Eq. (11.35).
Though not well verified, the connectivity factor for EGUE(2)-SU(4) can be
taken as K (m, f) ~ PSU®(m, f,,). Therefore, for the EGUE(2)-SU(4) en-
semble, S~ (m, f,,) = K (m, fn)/do(fn). For example, from Table 11.3 we
have K(m =4r, f ={4" ) =r(2 —r +4){2r(22 —2r +9) — 2 — 8} and
Km=4r+1, fr={4",1}) =r(2 —r +H{4r(22 —2r +7) 4+ 282 — 15} /2.
For the 8 particle example (with N = 24) considered before, the connectivity
factors K are 4284, 1440 and 864 respectively for EGUE(2), EGUE(2)-s with
S =0 and EGUE(2)-SU(4) with fg = {4*}. These give S~! =5.8 x 1073, 0.02

S (m, fm) = (12.1)
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and 0.49 respectively for these ensembles. Therefore as symmetry increases, in
general, the many particle EGUE matrices will become more dense.

Consequences of (i)—(iii) will be discussed in the next section.

12.2 Self Correlations in EGUE(2)-SU(r) for Fermions: Role of
Symmetries

Self correlations in energy centroids and spectral varlances for EGUE(2), EGUE(2)
s and EGUE(2)-SU (4) correspond to Z’rr (m,m), Xy (m,S :m, S) and Z‘rr (m, fm:
m, fn) respectively. Higher order self correlations are not studied yet in literature.
Significance of self correlations is that they will affect level motion in the ensembles
as already discussed in Sects. 4.3 and 9.4. Further significance of the magnitude of
the self correlations follows by comparing the results with the corresponding ones
for EGUE(2), EGUE(2)-s and EGUE(2)-SU(4) for fixed number of sp states. Ta-
ble 12.1 gives the results for N = 24 and 40. Then, £2 = 12 and 20 for EGUE(Z) S
and £2 = 6 and 10 for EGUE(2)-SU (4). Analytical formulas for Z‘ / % and E 1/ 2
are given in Sect. 11.1 for EGUE(2), in Sect. 11.4 for EGUE(2)-s and 1n Sect. 11 .5
for EGUE(2)-SU(4). It is seen from Table 12.1 that the magnitude of the covari-
ances in energy centroids and spectral variances increases by a factor of 3 when
we go from EGUE(2) — EGUE(2)-s — EGUE(2)-SU(4). As discussed before,
the fraction of independent matrix elements .# increases with symmetry and also
the sparsity (S) decreases and therefore the EGUE(2)-SU (4) matrices will be dense
leading to a more complete mixing of the basis states compared to EGUE(2) and
EGUE(2)-s. Thus, there is a correlation between (i) increase in fluctuations defined
by f]u and Z:‘zz and (ii) the matrices H,, (m) becoming more dense as we go from
EGUE(Q2) - EGUE(2)-s - EGUE(2)-SU(4). As fluctuations (in energy centroids
and spectral variances) are growing with increasing symmetry, it is plausible to con-
clude that symmetries play a significant role in generating chaos. Analyzing nuclear
shell model matrices with J symmetry [they correspond to EGOE(2)-J ensemble
described in Chap. 13], a similar conclusion was reached in [1] by Papenbrock and
Weidenmiiller and as they state: “While the number of independent random vari-
ables decreases drastically as we follow this sequence, the complexity of the (fixed)
matrices which support the random variables, increases even more. In that sense, we
can say that in the TBRE, chaos is largely due to the existence of (an incomplete set
of) symmetries.”

12.3 Cross Correlations in EGUE(2)-SU(r): A New Signature

One of the most significant aspect of embedded ensembles is that they generate
cross correlations in spectra [2]. For example, cross correlations in energy centroids
and spectral variances for EGUE(2), EGUE(2)-s and EGUE(2)-SU(4) correspond
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